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The influence of hydrodynamic screening near a surface on the dynamics of a single semiflexible
polymer is studied by means of Brownian dynamics simulations and hydrodynamic mean field the-
ory. The polymer motion is characterized in terms of the mean squared displacements of the end-
monomers, the end-to-end vector, and the scalar end-to-end distance. In order to control hydrody-
namic screening effects, the polymer is confined to a plane at a fixed separation from the wall. When
gradually decreasing this separation, a crossover from Zimm-type towards Rouse (free-draining)
polymer dynamics is induced. However, this crossover is rather slow and the free-draining limit is
not completely reached—substantial deviations from Rouse-like dynamics are registered in both sim-
ulations and theory—even at distances of the polymer from the wall on the order of the monomer
size. Remarkably, the effect of surface-induced screening of hydrodynamic interactions sensitively
depends on the type of dynamic observable considered. For vectorial quantities such as the end-
to-end vector, hydrodynamic interactions are important and therefore surface screening effects are
sizeable. For a scalar quantity such as the end-to-end distance, on the other hand, hydrodynamic
interactions are less important, but a pronounced dependence of dynamic scaling exponents on the
persistence length to contour length ratio becomes noticeable. Our findings are discussed against the
background of single-molecule experiments on f-actin [L. Le Goff et al., Phys. Rev. Lett. 89, 258101
(2002)]. © 2011 American Institute of Physics. [doi:10.1063/1.3593458]

I. INTRODUCTION

Semiflexible polymers are of interest in various fields of
science and technology due to their abundance in biologi-
cal and synthetic systems. Examples of wide biological rel-
evance include double-stranded DNA and cytoskeletal fila-
ments, such as actin and microtubules. The theoretical interest
in semiflexible polymer dynamics1–7 has been spurred since
the manipulation and observation of single polymer filaments
has become feasible experimentally. Nowadays, a variety of
refined experimental techniques allow to follow precisely and
analyze conformation and dynamics of single polymers un-
der all kinds of different environments, including confine-
ment in nanotubes and nanoslits.8, 9 To give explicit exam-
ples, internal relaxation dynamics of f-actin were resolved by
fluorescence videomicroscopy,10 and end-monomer dynam-
ics of dsDNA were investigated by fluorescence correlation
spectroscopy.11, 12 Although polymers are often confined due
to practical reasons in such experiments, hydrodynamic in-
teractions (HI) are—if considered at all—generally included
in existing theories13 assuming a boundless fluid. Though the
importance of HI was demonstrated in a range of simulation
studies on force- and/or shear-driven filaments,1–3, 7, 14, 15 the
question how the internal equilibrium dynamics of a poly-
mer change, when nearby surfaces alter the HI between differ-
ent parts of the polymer, has received little attention and the
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influence of surface-induced hydrodynamic screening on
semiflexible polymer dynamics has thus remained elusive.

Within the present paper we focus on one single semi-
flexible polymer, which is confined to a layer at fixed sepa-
ration from a planar hydrodynamic boundary at which a no-
slip boundary condition is enforced; the strength of HI thus
varies depending on the distance to the wall. Polymer dynam-
ics are studied by means of Brownian hydrodynamics simu-
lations and compared with a hydrodynamic mean field theory
(MFT). Our study demonstrates the complexity of semiflex-
ible polymer dynamics resulting from a subtle interplay of
chain connectivity, internal bending and stretching stiffness
as well as (screened) HI. We find the importance of HI to vary
among the different dynamic observables considered: while
the mean squared displacement (MSD) of vectorial quanti-
ties such as the end-monomer position or the end-to-end vec-
tor sensitively depends on the HI strength, this dependence
is much less pronounced for the MSD of a scalar quantity,
such as the end-to-end distance. In the scalar case, on the
other hand, a pronounced dependence of dynamic scaling ex-
ponents on the ratio of the bending and stretching stiffnesses
and on the ratio of contour and persistence lengths appears
in the data, in qualitative agreement with our reanalysis of
experimental data for the internal relaxation dynamics of f-
actin.10 Interestingly, for the MSDs of vectorial quantities the
crossover from Zimm-type behavior in bulk to Rouse-type be-
havior at the hydrodynamic boundary is rather slow and the
free-draining limit is not completely reached even when the
polymer distance from the wall is on the order of the monomer
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size. An interesting question in the future thus concerns the
relevance of hydrodynamics for the dynamics of biopolymers
in vivo with omnipresent confining surfaces and the crowded
environment of cellular systems.16

The paper is organized as follows: The essentials of
low Reynolds-number hydrodynamics near a planar surface,
which are used in both simulations and theory, are shortly
revisited in Sec. II. The Brownian hydrodynamics scheme
is described in Sec. III A; for the theoretical description of
semiflexible polymer dynamics a hydrodynamic mean field
approach4 is adapted to the present context, details of which
are found in Sec. III B. The results of hydrodynamic simula-
tions and of the theory are presented and discussed in Sec. IV;
the main implications of our findings are exposed in Sec. V.
Explicit expressions for the hydrodynamic interaction tensor
used for simulation purposes and within the analytic theory
are found in the Appendix.

II. HYDRODYNAMICS NEAR A PLANAR
NO-SLIP BOUNDARY

We assume the planar hydrodynamic boundary being
placed in the xy-plane at z = 0 of the coordinate system. The
no-slip boundary condition at the wall implies that all com-
ponents of the solvent flow field vanish at the boundary. The
incompressible Stokes equation,

∇ p(r) − η∇2v(r) = f (r), ∇ · v(r) = 0, (1)

relating pressure p, fluid velocity v , and an external force
field f , can be solved using a standard Green’s function tech-
nique. The solution satisfying the no-slip condition at z = 0,
named the Blake tensor ←→

μ B, is derived using the method of
images,17

←→
μ B(r, r ′) = ←→

μ O(r rel) − ←→
μ O(R) + ←→

μ D(R) − ←→
μ SD(R),

(2)

where r ′ = (x ′, y′, z′)T is the position of the Stokeslet, the im-
age Stokeslet has coordinates r̄ ′ = (x ′, y′,−z′)T, and the vec-
tors r rel ≡ r − r ′, and R ≡ r − r̄ ′ were defined. The Oseen
tensor ←→

μ O, the Stokes doublet ←→
μ D, and the source doublet←→

μ SD are 3 × 3-tensors with entries

←→
μ O(r)αβ = 1

8πηr

(
δαβ + rαrβ

r2

)
, α, β ∈ {x, y, z}, (3)

←→
μ D(R)αβ = 2z′2(1 − 2δβz)

8πη

(
δαβ

R3
− 3Rα Rβ

R5

)
, (4)

←→
μ SD(R)αβ = 2z′(1 − 2δβz)

8πη

×
(

δαβ Rz

R3
− δαz Rβ

R3
+ δβz Rα

R3
− 3Rα Rβ Rz

R5

)
,

(5)

where r ≡ |r| and R ≡ |R|. The hydrodynamic entrainment
effect of the motion of a finite sized sphere of radius a located
at r ′ on another equal-sized sphere at r is approximated by a
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FIG. 1. Parallel (‖) and perpendicular (⊥) self-mobilities of a sphere of ra-
dius a located at a vertical distance z from a no-slip wall (z = 0). The ap-
proximations of Eqs. (8) and (9) (dashed lines) are compared to the result for
the parallel mobility of Eq. (10) (solid blue line), and to the exact expression
for the perpendicular mobility of Eq. (11) (solid red line). Self-mobilities are
given in units of the bare self-mobility μ0 = 1/(6πηa) in a fluid of viscosity
η; the region z < a is inaccessible due to excluded-volume effects.

multipole expansion18, 19 to second order in the bead radius a,

←→
μ RPB(r,r ′) ≡

(
1+ a2

6
∇2

r + a2

6
∇2

r ′

)
←→
μ B(r, r ′), (6)

which in analogy to the procedure in an unbounded fluid is
called the Rotne-Prager level20 of the Blake tensor. The ap-
proximate expression for the HI between finite sized spheres
in Eq. (6) is used in both simulations and theory as detailed
in Sec. III; the explicit entries of the tensor are found in the
Appendix.

A. Self-mobilities

The no-slip boundary at the wall not only alters HI be-
tween different particles, but also affects the particles’ self-
mobilities. Approximate expressions18, 19 for the dependence
of the self-mobility of a sphere on the separation z to the wall
are obtained by considering the limit,

←→
μ RPB

self (z) ≡ lim
r→r ′

←̃→
μ

RPB
(r, r ′)

=
⎛
⎝μRPB

‖ (z) 0 0
0 μRPB

‖ (z) 0
0 0 μRPB

⊥ (z)

⎞
⎠, (7)

where ←̃→
μ

RPB
is the Rotne-Prager level of the tensor ←̃→

μ
B

,
in which—compared to the Blake tensor ←→

μ B in Eq. (2)—
the first Oseen contribution ←→

μ O(r, r ′), which has a singu-
larity at r = r ′, is replaced by the diagonal 3 × 3 matrix

μ0
←→
1 , μ0 ≡ 1/ (6πηa) being the bare Stokes self-mobility

of a sphere of radius a in a solvent of viscosity η. One ob-
tains renormalized self-mobilities parallel (‖) and perpendic-
ular (⊥) to the boundary, which depend on the distance z from
the wall,

μRPB
‖ (z) = μ0

(
1 − 9a

16z
+ 1

8

(
a

z

)3
)

+ O(a4), (8)
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μRPB
⊥ (z) = μ0

(
1 − 9a

8z
+ 1

2

(
a

z

)3
)

+ O(a4). (9)

In Fig. 1 the expressions in Eqs. (8) and (9), shown as broken
lines, which only approximately fulfill the no-slip boundary
condition on the bead’s surface, are compared to more elabo-
rate and experimentally tested results,21 shown as solid lines,
which correctly reproduce the short-range lubrication effects.
The expression for the self-mobility parallel to the wall ob-
tained by Perkins and Jones (PJ) (Ref. 22) and Stimson’s and
Jeffery’s (SJ) exact result for the self-mobility perpendicular
to the surface23, 24 read

μPJ
‖ (z) = μ0

(
1 − 8

15
log (1 − β) + 0.029β

+ 0.04973β2 − 0.1249β3 + . . .

)−1

, β ≡ a/z,

(10)

μSJ
⊥ (z) = μ0

(
4

3
sinh α

∞∑
n=1

n(n + 1)

(2n − 1)(2n + 3)

×
[

2 sinh ((2n+1)α)+(2n+1) sinh (2α)

4 sinh2 ((n+1/2)α)−(2n+1)2 sinh2 (α)
−1

])−1

,

α ≡ cosh−1 (z/a) . (11)

In Fig. 1, differences between the exact and the approxi-
mate self-mobilities are only noticeable for distances z � 2a.
For the sake of consistency of self-mobilities and inter-bead
HI described by the Rotne-Prager level of the Blake tensor
[Eq. (6)], we resort to the approximate expressions in Eqs. (8)
and (9) even for z < 2a. Since the continuum description of
hydrodynamics is expected to break down in any case in the
limit z → a — since single molecules have a non-vanishing
mobility even when they are in direct contact with a surface—
we do not attribute any experimental significance to the devi-
ations between our approximate and the exact expressions in
Fig. 1.

B. Hydrodynamic screening

HI are long-ranged, decaying as 1/r in an unbounded
fluid; the term hydrodynamic screening is employed to de-
scribe the weakening of these HI, for example, in the pres-
ence of nearby surfaces. Within the following discussion, we
restrict ourselves to the scenario schematically depicted in
Fig. 2, two equal-sized spheres of radius a at a distance z
from the no-slip interface and at a separation r from each
other along the x axis of the coordinate frame. As illus-
trated in Fig. 2, the hydrodynamic flow-field created by a
force f acting on one of the spheres also causes a motion
with velocity v = ←→

μ RPB · f of the other one. In the pan-
els (a)–(c) of Fig. 3, the strengths of HI at different dis-
tances from the wall are compared: the diagonal entries of
the Rotne-Prager level of the Blake tensor ←→

μ RPB, specified
in detail in the Appendix, are shown as a function of the inter-
particle distance r . While HI remain long-ranged decaying
as 1/r for r � z, a crossover to a 1/r3-scaling is observed

FIG. 2. Schematic illustration of the bead configuration for which the diag-
onal elements of the hydrodynamic interaction tensor relating the force f
acting on one of the beads and the velocity v of the other one are plotted
in Fig. 3: both spheres are located at the same height z above the no-slip
wall, the vector of length r connecting the sphere centers pointing along the
x-direction.

for r � z for HI along the connection vector in Fig. 3(a);
the strength of HI perpendicular to this axis decays faster
(∝ 1/r5), see Figs. 3(b) and 3(c). Note also the sign change
in μRPB

zz in Fig. 3(c) which turns from positive to negative for
r ≈ 0.9z for distances z � a.

To characterize the strength of HI for a certain relative
configuration of two spheres, we define the following scalar
quantity:

H (r, z) ≡
√√√√1

3

3∑
α,β=1

μRPB
αβ

2
,

〈v2〉 = 〈 f T · ←→
μ RPBT · ←→

μ RPB · f 〉 ≡ H 2(r, z) | f |2 ,

(12)

which relates the average mean-squared velocity of one
sphere,

√
〈v2〉, to the magnitude | f | of the force acting on

the other one, and where 〈. . . 〉 denotes an average over all
possible directions of the force. Dynamic scaling regimes in
the motion of semiflexible polymers result from a subtle in-
terplay of HI and monomer mobility, which both decrease
when approaching the no-slip boundary: as is visible from the
Langevin Eq. (14) underlying the Brownian dynamics (BD)
simulation method (cf. Sec. III A) as well as from the theo-
retical dynamic description in Sec. III B, a simultaneous drop
of HI and self-mobilities by the same factor is equivalent to
a rescaling of time and thus does not affect dynamic scaling
exponents; in turn, in order to see non-trivial dynamic effects
embodied in changes of dynamic scaling exponents, the ratio
between self- and cross-mobility must change. The unitless
ratio,

h(r, z) ≡ H (r, z)√
1
3

(
2(μRPB

‖ (z))2 + (μRPB
⊥ (z))2

) · μ0

limz→∞ H (r, z)
,

(13)
thus quantifies the relative importance of hydrodynamics at
a finite distance z from a no-slip boundary compared to an
unbounded fluid. For the configuration shown in Fig. 2, the
function h in Eq. (13) is plotted for different values of the
separation z in Fig. 3(d). In the limit of large separations
from the wall, z → ∞, full HI described by the Rotne-Prager
tensor20 ←→

μ RP [cf. Eq. (A2) in the Appendix] are recovered
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FIG. 3. Screened hydrodynamic interactions (HI) between spherical parti-
cles of radius a situated at a relative distance r from each other in the x-
direction and at equal height z above a no-slip interface (see Fig. 2). Panels
(a)–(c): The diagonal entries of the Rotne-Prager level of the Blake tensor
specified in the Appendix [Eqs. (A1)–(A5)] are shown for different distances
z from the wall (color lines); in the limit z → ∞ the usual Rotne-Prager ten-
sor (see Ref. 20), detailed in the Appendix in Eq. (A2), is recovered (solid
black line). A crossover from a scaling ∝ 1/r to ∝ 1/r3 and ∝ 1/r5 for
cross-mobilities parallel and perpendicular to the connection vector is in-
duced by the no-slip boundary condition at the wall. Panel (d): For the same
values of z as above the relative importance of HI compared to an unbounded
fluid is quantified in terms of the unitless function h defined in Eq. (13).

(h = 1), while the free-draining limit corresponds to h = 0.
As is clearly seen in Fig. 3(d), the influence of HI is contin-
uously reduced with increasing inter-bead separation r and
decreasing distance to the wall z compared to the case of an
unbounded fluid, though for small inter-bead separations it

remains sizeable even for z/a = 2. The consequences arising
from this complex behavior of HI and self-mobilities for the
dynamics of semiflexible polymers in the vicinity of a no-slip
boundary are presented and discussed in Sec. IV.

III. METHODS

A. Hydrodynamic simulations

The dynamics of a semiflexible polymer in solution is
simulated adopting a standard hydrodynamic BD scheme,25

in which the polymer is modeled as a chain of M beads of
radius a. For the low Reynolds number regime, the Langevin
equation governing the time evolution of the position r i =
(xi , yi , zi )

T of bead i is given by

d r i (t)

dt
=

M∑
j=1

←→
μ i j · (−∇r j U (r1, . . . , r M ))

+ kBT

[
dμRPB

⊥ (z)

dz

]
z=zi

ẑ + ξ i (t), (14)

where ẑ denotes the unit vector in the z-direction. The mobil-
ity matrix ←→

μ composed of the 3 × 3-submatrices
←→
μ i j = ←→

μ RPB
self (zi )δi j + (1 − δi j )

←→
μ RPB(r i , r j ), (15)

accounts for two effects: (i) the dependence of the self-
mobility on the distance zi of bead i from the wall [cf.
Eqs. (7)–(9)], and (ii) the fact that a force f j ≡ −∇r j U act-
ing on bead j creates a hydrodynamic flow-field in the fluid
thereby entraining bead i [cf. Eq. (6)]. The second term in
Eq. (14) is due to the spatial variation of the beads’ self-
mobilities; it is introduced to compensate the flux caused
by the position dependent random velocity contributions
ξ i ,25, 26 which are assumed to be Gaussian random vectors
with hydrodynamic correlations according to the fluctuation-
dissipation theorem,

〈ξ i (t) ⊗ ξ j (t
′)〉 = 2kBT ←→

μ i j δ(t − t ′). (16)

The potential U = UWLC + ULJ + Uconf determining the
configuration-dependent forces felt by the beads consists of
three terms

UWLC = γ

4a

M−1∑
i=1

(ri+1,i − 2a)2 + κ

2a

M−1∑
i=2

(1 − cos θi ),

ULJ = w
∑
i< j


(2a−ri j )

[(
2a

ri j

)12

−2

(
2a

ri j

)6

+1

]
,

Uconf = g

2

M∑
i=1

(zi − z0)2 , (17)

where ri j = |r i − r j | denotes the separation between the cen-
ters of beads i and j , and θi is the angle between the bond
vectors connecting beads i − 1 and i , and beads i and i + 1,
respectively. The shifted harmonic potential between adjacent
beads of strength γ = 200kBT/a keeps the contour length
L = (M − 1)2a approximately fixed, a bending potential of
strength κ between adjacent bonds takes care of the bend-
ing stiffness of the chain, and the pairwise truncated repulsive
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FIG. 4. Schematic illustration of the simulation setup: A polymer chain con-
sisting of M monomers of radius a is confined by the harmonic potential
Uconf [Eq. (17)] centered around z0 acting in the z-direction; the strength of
HI varies depending on the separation z from the wall.

Lennard-Jones potential ULJ of strength w = 3kBT prevents
significant bead overlap, which otherwise would be a source
of numerical instabilities. The harmonic potential Uconf of
strength g = 1kBT/a2 centered around z0 keeps the average
distance of the polymer beads from the wall fixed; the sim-
ulation setup is schematically illustrated in Fig. 4. By grad-
ually varying the value of z0, the influence of the hydrody-
namic boundary condition at the wall on the motion of the
polymer is sensitively resolved. In the limit of infinite separa-
tion from the wall, the usual Rotne-Prager tensor,20 specified
in Eq. (A2) in the Appendix, is recovered as hydrodynamic
interaction tensor.

Eq. (14) is discretized and integrated numerically using
a simple Euler algorithm; the time discretized form of the
Langevin equation for bead i reads

r i (t + �t) = r i (t) +
( M∑

j=1

←→
μ i j · f j

+ kBT

[
dμRPB

⊥ (z)

dz

]
z=zi

ẑ

)
�t + �r ran

i (t), (18)

where the time step is denoted by �t , and the stochas-
tic contributions �r ran

i are Gaussian distributed random
vectors with vanishing mean and correlations 〈�r ran

i (t) ⊗
�r ran

j (t)〉 = 2 kBT ←→
μ i j�t . In the case of collisions with

the wall, the z-component is reflected about z = a, while
the updating scheme for the other components remains un-
changed. The correlated stochastic contributions of Eq. (16)
are obtained from uncorrelated Gaussian noise by means of a
Cholesky decomposition of the hydrodynamic matrix ←→

μ . In
all the results below, lengths are measured in units of the bead
radius a, energies in units of thermal energy kBT and time in
units of τ ≡ a2/(kBT μ0).

B. Hydrodynamic mean field theory

For the theoretical description of the polymer motion, we
apply a dynamic mean field approach which has proven use-
ful for the description of semiflexible polymer dynamics in
three dimensions in various contexts ranging from DNA end-
monomer diffusion4, 5 to DNA-protein binding dynamics.27

The simplest description of a semiflexible polymer is the
wormlike chain (WLC) model: the polymer is represented
by a continuous, differentiable space curve r(s) of contour
length L . The associated elastic energy UWLC, the continuum

analogue of Eq. (17), is given by28

UWLC[r(s)] = κ

2

∫ L/2

−L/2
ds

(
∂u(s)

∂s

)2

. (19)

Here, the arc-length variable ranging from −L/2 to L/2
is denoted by s, and the tangent vector u ≡ ∂ r/∂s is con-
strained by local inextensibility to unit length, u2(s) = 1 ∀ s.
The bending rigidity κ is related to the persistence length ldD

p ,
the typical length scale on which tangent-tangent correlations
decay

〈u(s) · u(s ′)〉 = exp

(
−|s − s ′|

ldD
p

)
, ldD

p ≡ 2κ

(d − 1)kBT
,

(20)
where d is the dimension. In this paper we consider the case
of two-dimensional confinement (d = 2); the configurational
space being reduced compared to three dimensions, a poly-
mer with given bending rigidity κ therefore appears stiffer in
confinement: lp ≡ l3D

p = l2D
p /2.

The constraint in the tangent vector length leading to
nonlinear equations of motion, an alternative, approximate
model is required. Within a mean field approach29, 30 the lo-
cal constraint is relaxed and replaced by the global and end-
point conditions 〈∫ ds u2(s)〉 = L and 〈u2(±L/2)〉 = 1. The
resulting Gaussian mean field Hamiltonian incorporates a fi-
nite extensibility in addition to the bending term,

UMF[r(s)] = ε

2

∫ L/2

−L/2
ds

(
∂u(s)

∂s

)2

+ ν

∫ L/2

−L/2
ds u2(s)

+ν0(u2(L/2) + u2(−L/2)), (21)

where the MFT parameters

ε = l2D
p kBT, ν = kBT

2l2D
p

, and ν0 = kBT

2
, (22)

are chosen such that the most important static equilibrium
quantities of the WLC, the tangent-tangent correlation func-
tion in Eq. (20) and other derived quantities, such as the mean
squared end-to-end distance, are correctly reproduced.31

The dynamic theory for the Gaussian semiflexible poly-
mer is based on the hydrodynamic preaveraging approach,32

analogous to that used for the Zimm model33 in the case of
flexible chains. Within that approximation, the time evolution
of the position-vector of point s on the polymer contour within
the x-y-plane is governed by the Langevin equation,

∂

∂s
r(s, t) = −

∫ L/2

−L/2
ds ′ ←→

μ avg(s, s ′; z)
δUMF

δr(s ′, t)
+ ξ (s, t),

(23)
〈ξ (s, t) ⊗ ξ (s ′, t ′)〉 = 2kBT ←→

μ avg(s, s ′; z) δ(t − t ′).

Here the preaveraged mobility tensor ←→
μ avg is used, which is

a function of the contour points s and s ′ only and does not
depend on the actual spatial positions r(s, t) and r(s ′, t). The
preaveraged tensor is given by

←→
μ avg(s, s ′; z) = [

2aμRPB
‖ (z)δ(s − s ′) + 
(|s − s ′| − 2a)

×μRPB
avg (s, s ′; z)

]←→
1 , (24)
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thus incorporating the self-mobility μRPB
‖ parallel to the

boundary [Eq. (8)], and the preaveraged HI between different
parts of the polymer contour μRPB

avg , which are cut off for dis-
tances |s − s ′| < 2a by the unit step function 
; in Eq. (24),

the 2 × 2 identity matrix is denoted by
←→
1 . The preaver-

aged HI are obtained by averaging the 2 × 2 sub-block of the
Rotne-Prager level of the Blake tensor [Eq. (6)] correspond-
ing to the x- and y-components over all equilibrium configu-
rations of the polymer,

←→
μ RPB

avg (s, s ′; z) =
∫

d2r ←→
μ RPB(r; z)Peq(r; s, s ′)

= μRPB
avg (s, s ′; z)

←→
1 , (25)

where a Gaussian equilibrium distribution of (two-
dimensional) distances r between s and s ′ is used,

Peq(r; s, s ′) = 1

πσ (s − s ′)
exp

(
− r2

σ (s − s ′)

)
,

σ (�s) ≡ 2l2D
p (�s − l2D

p (1 − e−�s/ l2D
p )). (26)

Note that the steric effect of the wall need not be accounted
for, since the polymer distribution is restricted to a two-
dimensional layer. The explicit functional form of μRPB

avg ap-
pearing in Eqs. (24) and (25) is given in Eq. (A9) in the
Appendix.

The preaveraged Langevin Eq. (23) can be solved
through a normal mode decomposition, with the eigenmodes
fulfilling free-end boundary conditions at s = ±L/2. Since
the MFT parameters (Eq. (22)) are all just multiplied by the
constant factor 2/3 compared to three dimensions, the free-
end boundary conditions and the form of the normal modes
described in detail elsewhere4 remain unchanged. The eigen-
mode expansion yields a set of ordinary differential equa-
tions coupled by a hydrodynamic interaction matrix; once this
matrix is diagonalized,4, 33 the problem is reduced to simple
Langevin equations for the decoupled normal mode ampli-
tudes Pn(t) with stochastic contributions Qn(t),

∂

∂t
P0(t) = Q0(t),

∂

∂t
Pn(t) = −�n Pn(t) + Qn(t), n = 1, . . . , N , (27)

〈Qn(t) ⊗ Qm(t ′)〉 = 2kBT δnmδ(t − t ′)
n
←→
1 .

The vectors Pn(t) and Qn(t) are related to the polymer
conformation r(s, t) and to the stochastic velocities ξ (s, t)
through the expansions

r(s, t) =
N∑

n=0

Pn(t)�n(s), ξ (s, t) =
N∑

n=0

Qn(t)�n(s),

(28)
where the scalar functions �n(s) are the decoupled normal
modes. The modes are ordered in such a way that the eigen-
values �n (inverse relaxation times) increase with n. We set
the high-frequency cutoff N for the mode number to N =
�L/8a�, which was previously shown to give good agreement
at small scales with BD simulations in three dimensions.4, 27

The precise choice of the mode number cutoff does not in-

fluence the polymer motion on length scales much larger
than the monomer radius a and is therefore only relevant on
time scales t � τ . The inverse relaxation times �n and the
fluctuation-dissipation parameters 
n can directly be derived
from the tensor ←→

μ RPB
avg evaluated numerically in the normal

mode basis. Full details of this procedure together with the
explicit form of the normal modes �n(s) were given before.4

Using the Langevin equations in Eq. (27) and the normal
mode decomposition in Eq. (28), the MSD of the polymer’s
ends �2

e and the MSD of the end-to-end vector �2
ee are readily

calculated, yielding

�2
e(t) ≡ 〈(r(±L/2, t) − r(±L/2, 0))2〉

= 4D2D
polt+4kBT

N∑
n=1


n

�n
�2

n (±L/2)(1−e−�n t ), (29)

�2
ee(t) ≡ 〈((r(L/2, t) − r(−L/2, t))

−(r(L/2, 0) − r(−L/2, 0)))2〉

= 4kBT
N∑

n=1, odd


n

�n
(�n(L/2)

−�n(−L/2))2(1 − e−�n t ), (30)

where the center-of-mass diffusion constant of the polymer is

D2D
pol ≡ kBT 
0�

2
0 (±L/2). (31)

The temporal dependence of the dynamic quantities in
Eqs. (29) and (30) for different distances z from the no-slip
wall are compared to BD results in Sec. IV.

IV. RESULTS AND DISCUSSION

Extensive hydrodynamic BD simulations of polymers of
contour length L = 100 a (corresponding to M = 51 beads)
and (three-dimensional) persistence lengths lp ranging from
40 to 320 a were performed at various average distances z0

from the wall; a simulation snapshot showing polymer con-
formations at different distances from the wall is found in
Fig. 5.

The simulation time step was set to �t = 0.06 a/(μ0γ ),
corresponding to �t = 3 × 10−4 τ for the stretching parame-
ter γ = 200kBT/a, which was used in all hydrodynamic and
most of the free-draining simulations. Each trajectory lasted
3 × 105 τ , after an initial thermalization period of 3 × 103 τ .
For each parameter set, the observables of interest were av-
eraged along each trajectory and over up to 16 independent
simulation runs. For comparison, we also performed free-
draining BD simulations, using a diagonal hydrodynamic ma-

trix ←→
μ i j = μ0δi j

←→
1 in Eqs. (15) and (16), and also set up a

free-draining version of the MFT by replacing Eq. (24) by
←→
μ avg(s, s ′) = 2aμ0δ(s − s ′)

←→
1 , where μ0 is the bare mo-

bility of a sphere of radius a (at infinite distance from the
confining plane).

We first discuss the time dependence of the end-monomer
and the end-to-end vector MSDs [Eqs. (29) and (30)] and their
sensitivity to bending stiffness and hydrodynamic screening:
as is illustrated in the graph in Fig. 5, the end-monomer

Downloaded 16 Jun 2011 to 128.8.92.75. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



235102-7 Hydrodynamically screened polymer dynamics J. Chem. Phys. 134, 235102 (2011)

FIG. 5. BD simulation snapshot showing conformations of a polymer con-
sisting of 51 beads (contour length L = 100 a) and persistence length lp =
40 a subject to a harmonic confining potential centered around z0 = 10 a
(blue) and z0 = 2a (orange). The graph displays MFT results for the end-
monomer MSD �2

e (Eq. (29), solid lines), which for long times reduces to the
center of mass MSD 4D2D

polt [cf. Eq. (31)], and the end-to-end vector MSD
(Eq. (30), broken lines), which in the long time limit levels off at twice the
mean squared end-to-end distance σ (L) [cf. Eq. (26)].

MSD �2
e reduces to the center-of-mass MSD, 4D2D

polt , once

the largest relaxation time �−1
1 is reached, while the end-to-

end vector MSD �2
ee levels off at twice the equilibrium mean

squared end-to-end distance σ (L) [cf. Eq. (26)] for times
t � �−1

1 .
The end-monomer MSD �2

e in the x-y-plane for
polymers of contour length L = 100 a and four different
persistence lengths lp are shown in the upper panels of Fig. 6:
symbols denote hydrodynamic and free-draining simulation
results, the lines correspond to the MFT expression given
in Eq. (29). The overall agreement between simulations and
MFT is good, in agreement with our previous results for
the bulk case.4–6 Note that no fitting parameter is used in
the MFT. Two distinct effects are clearly identified in both
simulation and theory: (i) when decreasing the distance to
the wall, the curves are shifted to larger times, i.e., the overall
dynamics are slowed down and (ii) the slope of the curves on
the double-logarithmic scale corresponding to the exponent
of the underlying power law decreases. These are non-trivial
effects, since they depend on the subtle interplay between
wall-induced self-mobility and HI, which both decrease when
approaching the wall as shown in Figs. 1 and 3. Since the
curves in the double-logarithmic representation show devia-
tions from perfect straight lines, we adopt the concept of a lo-
cal exponent,4 which for a general function f (t) is defined as

α(t) ≡ d log f (t)

d log t
. (32)

The time dependent local exponent α(t) is estimated at each
time t by fitting straight lines to the double logarithmic plot
of MSD data points at times ti within a small range around t ,
defined by the condition | log10 (ti/t)| < 0.15; the local expo-
nents of the end-point MSDs are shown in the lower panels
of Fig. 6. For short times, they exhibit extended plateaus
over several decades, while a crossover to the center-of-mass
exponent 1 takes place at times beyond the largest relaxation
time �−1

1 of the polymer. The largest relaxation times, which
are designated by vertical arrows in Figs. 6 and 7, increase
by approximately a factor 5 when HIs are turned off. Note
that even for times shorter than �−1

1 the exponents start to

oscillate, these extended crossover regions reflect rotations of
the entire polymer which for stiff filaments is captured by the
first eigenmode.5, 31 Insufficient sampling leads to statistical
noise in the simulated local exponents for times t � 103 τ ,
such that the crossovers are only partially seen in the sim-
ulation data. When decreasing the distance to the wall, the
values of the exponent are continuously reduced, approaching
the scaling behavior of the free-draining limit, where for
very stiff polymers without HI a typical scaling exponent of
3/4 is expected.4, 32 We briefly recall our previous results for
the scale-dependent dynamics of semiflexible polymers in
bulk.4–6 In the weak stiffness range a < lp < L , the exponent
α for the end-point MSD was shown to change continuously
as a function of time and to show a pronounced minimum
roughly at the largest internal polymer time scale. Only in
the limit a � L � lp asymptotic scaling is observed and
in the absence of HI, the classical wormlike-chain exponent
α ≈ 3/4 is realized for times t < �−1

1 . In the presence of HI,
all exponents are increased by a constant shift of roughly 0.1
and thus the asymptotic wormlike-chain exponent is more
of the order α ≈ 0.85. Those results from hydrodynamic
simulations and hydrodynamic MFT could be rationalized
by scaling theory and eigenmode analysis4 and quantitatively
compared with experimental time-resolved data for DNA.5, 6

Remarkably, the dynamic crossover from hydrodynamic
to free-draining behavior in Fig. 6 sets in at relatively small
distances z0 from the wall; in fact, the dynamics for z0 = 2a,
i.e., at a monomeric separation of the polymer from the wall,
are characterized by a considerably higher slope than the free-
draining one, meaning that HI—though screened—still con-
tribute substantially to the relaxation dynamics. Note that this
is not an artifact due to the use of approximate self-mobilities
and HI of finite sized beads in hydrodynamic simulations and
the MFT, since even at separations of two monomer radii from
the wall these approximations compare well to the exact ex-
pressions (cf. Fig. 1). Similar trends are seen in the MSD of
the end-to-end vector �2

ee in Fig. 7, which saturates at twice
the average squared end-to-end distance of the polymer for
t � �−1

1 ; again a slowdown of the dynamics and a decrease
of the local exponent are observed when HI are reduced due
to the nearby wall; local slopes are reversely ordered due to
this slowdown for t � �−1

1 .
The quantitative agreement of the MSDs in BD simula-

tions and in the MFT [Eqs. (29) and (30)] is less impressive
in the confined geometry than in the three-dimensional case,5

the MSDs generally being overestimated by the theory. The
reasons for the reduced accuracy of the theory in the present
case are manifold: (i) Within the MFT the polymer is treated
as completely confined to two dimensions, while small out of
plane fluctuations are possible in the simulations, (ii) as was
argued in Ref. 5, long ranged HI are one factor for the success
of the MFT in three dimensions; conversely, a worsening of
the theory is thus expected in the present case, when the wall
is approached and in consequence HI are gradually weakened
(cf. Fig. 3), and (iii) in analogy with the critical behavior of
lattice spin systems,34 mean field theory and similarly also
the preaveraging approximation of the hydrodynamic tensor
are expected to perform better in higher dimension; the re-
duced accuracy of the two-dimensional theory can therefore

Downloaded 16 Jun 2011 to 128.8.92.75. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



235102-8 von Hansen, Hinczewski, and Netz J. Chem. Phys. 134, 235102 (2011)

100

101

102

103

104

105

Δ
2 e

[a
2
]

z/a = ∞
z/a = 10

z/a = 2

free-dr.

z0/a = ∞
z0/a = 10

z0/a = 2

free-dr.

101 102 103 104 105

t [a2/kBTμ0]

0.7

3/4

0.8

0.9

α

lp = 160 a
100

101

102

103

104

105
Δ

2 e
[a

2
]

z/a = ∞
z/a = 10

z/a = 2

free-dr.

z0/a = ∞
z0/a = 10

z0/a = 2

free-dr.

101 102 103 104 105

t [a2/kBTμ0]

0.7

3/4

0.8

0.9

α

lp = 320 a

101

102

103

104
Δ

2 e
[a

2
]

z/a = ∞
z/a = 10

z/a = 2

free-dr.

z0/a = ∞
z0/a = 10

z0/a = 2

free-dr.

101 102 103 104 105

t [a2/kBTμ0]

0.7

3/4

0.8

0.9

α

lp = 40 a
101

102

103

104

Δ
2 e

[a
2
]

z/a = ∞
z/a = 10

z/a = 2

free-dr.

z0/a = ∞
z0/a = 10

z0/a = 2

free-dr.

101 102 103 104 105

t [a2/kBTμ0]

0.7

3/4

0.8

0.9

α

lp = 80 a

FIG. 6. In-plane dynamics of a polymer of length L = 100 a and (three-dimensional) persistence length lp ranging from 40 to 320 a held at an average distance
z0 from a no-slip wall: end-monomer MSD (upper panels) and the corresponding local exponent α (lower panels) are shown. The symbols denote results from
hydrodynamic and free-draining BD simulations, while the lines are results of the two dimensional MFT [Eq. (29)] for polymers at a distance z from the wall.
Vertical arrows designate the largest MFT-relaxation times �−1

1 .

be, at least in part, attributed to the lower dimension. How-
ever, the general trends induced by the interaction with the
no-slip boundary, which are seen best in the local exponents
(lower panels of Figs. 6 and 7), are reliably reproduced by the
MFT.

Considerably stiffer and longer chains, where the differ-
ent dynamic regimes are clearly separated in time, are not
accessible yet by means of simulations because of the over-

whelming computational costs. In contrast, the mean field ap-
proach is equally applicable here. MFT results for a chain of
length L = 500 a and lp = 500 a shown in Fig. 8 confirm the
previous observations: when approaching the wall, hydrody-
namic screening shifts the crossovers to larger times and si-
multaneously decreases the (local) exponent, though not quite
reaching the free-draining limit with exponent 3/4 even at
wall separations on the order of the monomer size.
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FIG. 7. Same as Fig. 6, but showing the end-to-end vector MSD [Eq. (30)] (upper panels) and the corresponding local exponent α (lower panels).

Clearly, the strength of HI is the most relevant parameter
for determining the dynamic scaling exponents in Figs. 6–8,
while the ratio lp/L , ranging from 0.4 to 3.2, is of compara-
tively minor importance for the MSDs of the vectorial quan-
tities considered so far.

Experimentally, end-to-end relaxation dynamics were
studied using end-labeled f-actin filaments,10 which were
enclosed in a 1μm thick chamber to keep the fluorescent
markers in the focal plane of the microscope. The dynam-
ics of filaments of contour lengths L ranging from 5.9 to

25.6μm and persistence length lp ≈ 15.7μm (Ref. 10) was
quantified in terms of the MSD of the (scalar) end-to-end
distance,

�2
see ≡〈(R(t) − R(0))2〉, R(t)≡|r(L/2, t) − r(−L/2, t)|,

(33)

which obviously differs from the end-to-end vector MSD in
Eq. (30); in their work Le Goff et al. suggested a linear rescal-
ing of the time and MSD variables in order to collapse the
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FIG. 8. MFT results for in-plane dynamics of a polymer of length L = 500 a and persistence length lp = 500 a: the upper panels show the end-monomer MSD
[left, Eq. (29)] and the end-to-end vector MSD [right, Eq. (30)]; the lower panels show the corresponding local exponents α for various distances z from the
wall as well as in the free-draining limit. Vertical arrows designate the largest MFT-relaxation times �−1

1 .

MSD dataset onto a single master curve, which at short times
reduces to a power law scaling with exponent α = 3/4. In-
terestingly, our reanalysis of the experimental data in terms
of local slopes reveals smooth crossovers from values be-
tween 0.8 and 1.0 at short times to values around 0.7 be-
fore the slopes quickly drop towards 0. The original data as
well as the corresponding local slopes, both affected by sig-
nificant statistical noise, are shown in Fig. 9: plateau regions
with an approximately constant exponent (cf. Figs. 6–8) are
not observed. Note that when linearly rescaling time t̃ ≡ βt
and the dynamic observable of interest f̃ (t̃) ≡ ζ f (βt), the lo-
cal exponent defined in Eq. (32) is unchanged, α̃(t̃) = α(βt),
so the rescaling cannot be the reason for the apparent expo-
nent plateau seen in the original data analysis. Rather, the
graphical averaging over the various filament lengths seems
to wash out the variations of the exponent as a function of
time and when comparing different filament lengths with each
other.

Unfortunately, the isotropic mean field theory in the for-
mulation in Sec. III B does not allow the evaluation of the
scalar end-to-end distance MSD measured in the experiments.
Also, a direct comparison of experiments and hydrodynamic
simulations is unfeasible because of the immense computa-
tional costs associated with contour lengths L/a ∼ O(103).
The MSD of the scalar end-to-end distance from BD simula-
tions of chain length L = 100 a are shown in Fig. 10. As in
the case of the end-to-end vector MSD in Fig. 7, the weak-
ening of HI leads to a slowdown of the overall relaxation dy-
namics, the saturation crossover being shifted to larger times;
the scalar end-to-end distance, however, saturates at consider-
ably smaller times since the slow rotational mode of the entire
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FIG. 9. (Upper panel) Experimental MSD of the scalar end-
to-end distance of f-actin filaments of contour length L =
5.9, 10.4, 10.7, 11.8, 11.8, 11.9, 12.9, and 25.6 μm (from bottom to
top, data digitized from the inset of Fig. 3 in Ref. 10; since all data points
were plotted using the same dot size in the original publication, only those
parts of the dataset were used, which could unambigously be assigned to
a certain contour length L). Assuming a (three-dimensional) persistence
length lp ≈ 15.7 μm, (see Ref. 10) the ratio lp/L thus varies between 0.61
and 2.66 (from top to bottom). (Lower panel) Corresponding local slope α.
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FIG. 10. Scalar end-to-end distance MSD extracted from hydrodynamic BD simulations of a polymer of length L = 100 a and varying stiffness lp/L for
several average distances z0 from the confining wall (upper panels) as well as corresponding the local exponents α (lower panels). For comparison results from
free-draining BD simulations are shown using red triangles.

filament is factored out in this observable. In accordance with
the experimental data in Fig. 9, the local exponents are rather
characterized by smooth crossovers than by constant values;
most strikingly, the comparison of the simulation results in
Fig. 10 reveals a strong dependence of the local exponents
on the ratio lp/L . Typical values of α � 0.8 for lp/L = 0.4,
α ≈ 0.7 − 0.75 for lp/L = 0.8, α ≈ 0.65 for lp/L = 1.6, and
α ≈ 0.5 for lp/L = 3.2 are identified, in agreement with re-
sults previously obtained for the fluctuations of unconstrained

filaments.5 For a fixed ratio lp/L , the strength of HI varying
with the distance z0 from the boundary only slightly affects
the local exponents, hydrodynamics thus seems to be of mi-
nor importance for the dynamic scaling of the scalar end-to-
end distance MSD, in contrast to the vectorial MSDs in Figs. 6
and 7. This is not surprising, as hydrodynamics most strongly
affect center-of-mass translation and rotation, both of which
are factored out in the scalar end-to-end distance. This finding
suggests to use free-draining simulations for a more detailed
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stant γ = 200 kBT/a (filled symbols) are compared to the same observables
when employing γ = 1000 kBT/a (open symbols).

analysis of the dynamic scaling behavior of the scalar end-to-
end distance.

The fact that the local slopes in Fig. 10 tend towards 1/2
instead of 3/4 with increasing ratio lp/L is easily understood
by realizing that we keep the harmonic bond-stretching pa-
rameter [cf. Eq. (17)] constant at a value γ = 200 kBT/a in
our simulations, while varying the bending stiffness κ; as a
consequence, the free-draining scalar end-to-end relaxation
becomes dominated by stretching relaxation35 with charac-
teristic exponent 1/2 in the limit κ → ∞, where we note that
the weakly bending wormlike chain exponent 3/4 is expected
only in the idealized limit of a perfectly inextensible semi-
flexible chain. To substantiate this suggestion, we compare
the scalar end-to-end MSDs of free-draining simulations with
γ = 200kBT/a and γ = 1000 kBT/a in Fig. 11. Indeed, one
finds higher slopes in the less extensible case, when employ-
ing a higher value of γ . In turn, variations of the chain extensi-
bility only marginally affect end-to-end relaxation dynamics
in the flexible regime lp/L � 1, since here the relaxation is
dominated by bending fluctuations. In fact, for experimental
biopolymers, the stretching and bending stiffness constants
are not independent quantities. Rather, the ratio of the stretch-
ing and bending energy parameters,

χ ≡ γ a2

4κ
, (34)

presumably is rather constant and on the order of unity for
real polymers, as in the case of an isotropic elastic cylinder.36

Since higher values of the stretching parameter γ require

100
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Δ
2 se

e
[a

2
]

∝ t3/4
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t [a2/kBTμ0]

0.4

1/2

0.6

0.7

3/4

0.8

α
FIG. 12. (Upper panel) Influence of simultaneous variation of bending and
stretching stiffness on the scalar end-to-end distance MSD [Eq. (33)] in free-
draining BD simulations of a polymer of length L = 100 a. Results are shown
for polymers of different stiffness lp/L , but constant χ defined in Eq. (34),
corresponding to isotropic elastic cylinders. (Lower panel) Corresponding
local exponents.

a reduced simulation time step �t (cf. beginning of this
section), this is currently unfeasible for simulations includ-
ing HI (the simulation time for a single hydrodynamic tra-
jectories with 109 time steps lasting ∼40 days on a stan-
dard single-core computer), we therefore continue our dis-
cussion with free-draining simulations. This restriction seems
not to be serious, though, as the results in Fig. 10 showed
that hydrodynamics are rather unimportant for the MSD of
the scalar end-to-end distance anyways. In Fig. 12, we show
the scalar end-to-end distance MSD from free-draining sim-
ulations, in which γ and κ where simultaneously modified
keeping χ = 1.25 constant. As is clearly seen, the trends ob-
served in Fig. 10 remain unchanged: when increasing the ra-
tio lp/L , the local exponents gradually decrease (below 3/4),
in qualitative agreement with the experimental data shown in
Fig. 9.

We cautiously remark that experimentally, the ratio lp/L
is varied by choosing filaments of different contour lengths
L while keeping the persistence length lp fixed, while in our
simulations the persistence length lp is varied while keeping
L fixed. These two scenarios are not strictly equivalent since
an additional length scale, the monomer radius a, is present
in the problem, giving a second dimensionless length-scale
ratio L/a. In order to look into this, we in Fig. 13 show MFT
results of the end-monomer and end-to-end vector MSDs for
filaments of varying length to monomer radius ratio L/a, but
constant ratio lp/L = 1.

Note that the dependence on the monomer radius a
can be scaled out in the free-draining limit; in other words,
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FIG. 13. (Upper left) MFT results for the end-monomer position vector MSD with hydrodynamic interactions (solid lines) and in the free-draining limit (FD,
dashed lines) for filaments of varying contour length L and persistence length lp, but constant ratio lp/L = 1. (Lower left) A rescaling of time and MSD by the
polymer length L yields a collapse of the free-draining MSDs on a master curve, deviations at small times resulting from differences in the mode-number cutoff
N (cf. Sec. III B). Note that in the presence of HI no collapse is obtained. (Upper and lower right) Same plots for the end-to-end vector MSD.

free-draining relaxation dynamics are characterized by the ra-
tio lp/L only, as is clearly seen in the lower panels of Fig. 13,
where we show the data rescaled by the polymer length L .
On the other hand, HI give rise to a genuine logarithmic de-
pendence of the dynamics on the ratio L/a. The dilemma is
that our simulations do not span a large enough range of ra-
tios lp/L and L/a in order to extract the full scaling behavior,
while the MFT cannot be used to calculate the experimentally
measured scalar end-to-end distance MSD. Nevertheless, it is
conceivable that the scaling in terms of one parameter only,
namely, the ratio lp/L , observed in the MFT for the MSDs
of the vectorial observables without HI (Fig. 13), also holds
for the scalar end-to-end distance MSD, for which the hy-
drodynamic effects have been shown to be rather unimpor-
tant in simulations (Fig. 10). This suggestion is enforced by
the observation that experiments and simulation results for
the scalar end-to-end distance MSD in Figs. 9 and 12 show
similar behavior for matching values of lp/L , although the
values of L/a are very different. Based on the similar qual-
itative trends seen in the restricted experimental and simu-
lation data sets displayed in Figs. 9 and 12, we are led to
the following tentative conclusions: (i) local exponents for
the scalar end-to-end distance MSD do not show character-
istic plateau values but rather continuously decrease with in-
creasing time and (ii) the dynamic scaling varies with polymer
stiffness lp/L , where values of α � 3/4 are observed for more
flexible chains (lp/L < 1), while exponents α � 3/4 are char-
acteristic for stiffer filaments (lp/L > 1). These observations
crucially depend on the presence of stretching fluctuations,
as indeed experimentally present for elastic biopolymers. The

strength of HI, which has sizeable effects on the MSDs of vec-
torial observables, mainly reduces to a temporal rescaling for
the case of the scalar end-to-end distance MSD. Given these
results, the collapse of experimental scalar end-to-end MSDs
for different lp/L on a single master-curve,10 calls for further
experimental investigations in light of the presence of stretch-
ing fluctuations as described by an extensible WLC model
with finite χ .

V. CONCLUSIONS

In this paper we have presented results from hydrody-
namic and free-draining BD simulations of a single semiflex-
ible filament in the vicinity of a hydrodynamic no-slip wall:
by varying the distance to the boundary, we could accurately
resolve the influence of hydrodynamic screening on typical
dynamic quantities, such as the end-monomer and end-to-
end vector MSD of the polymer filament; the weakening of
HI when approaching the wall is clearly reflected in these
observables. Though being less accurate than in the three-
dimensional case, the adaptation of a hydrodynamic mean
field theory nicely captures the trends seen in the simulations:
the slowing down of the overall dynamics and the crossover
towards free-draining dynamic scaling when approaching the
wall; in addition the theoretical approach allows to consider
polymer lengths inaccessible in simulations due to the in-
creased computational costs.

Our analysis reveals that (screened) hydrodynamics con-
tribute differently to different dynamic variables: MSDs of
vectorial quantities such as the end-monomer position and
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the end-to-end vector show distinct plateaus in their local
slopes, which are similar over a broad range of stiffnesses
and gradually decrease when approaching the surface. Never-
theless, hydrodynamics continue to be important at polymer-
wall separations on the order of the monomer-size; the free-
draining limit therefore remains an inaccurate approxima-
tion to the actual dynamics, even very close to planar sur-
faces. To what extent similar reservations hold in other ge-
ometries or in non-dilute polymer solutions remains for future
investigations.

On the other hand, rotations of the entire filament are
factored out in the scalar end-to-end distance MSD, and the
dynamic scaling exponent rather results from an interplay of
stretching and bending stiffness; here, the role of hydrody-
namic screening is mainly reduced to a temporal rescaling.
The non-universal dependence of the scaling exponent on the
persistence length to contour length ratio lp/L seen in the
free-draining simulations qualitatively agrees with a similar
dependence seen in our reanalysis of experimental data for f-
actin filaments10 and crucially depends on the fact that one
includes chain stretching fluctuations in the theoretical mod-
eling as appropriate for elastic biopolymers.

On the basis of our findings, the characterization of pre-
vious experimental data in terms of a single dynamic scal-
ing exponent appears oversimplified; experiments resolving
more dynamic observables than the usual scalar end-to-end
MSD, extending the analysis to a larger range of stiffnesses
lp/L , and rigorously identifying the hydrodynamic influence
of nearby boundaries would certainly be helpful in shining
more light on the rich and complex relaxation dynamics of
single semiflexible polymers as well as of polymer networks.
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APPENDIX: ROTNE-PRAGER LEVEL OF THE BLAKE
TENSOR

1. Explicit entries of the tensor

As outlined in Sec. II, the Rotne-Prager level of the Blake
tensor describing the approximate HI of finite sized particles
near a no-slip wall at z = 0 is obtained from the Blake tensor←→
μ B by the operation,

←→
μ RPB(r i ,r j ) =

[(
1+ a2

6
∇2

r + a2

6
∇2

r ′

)
←→
μ B(r, r ′)

]
r=r i ,r ′=r j

= ←→
μ RP(r i −r j )−←→

μ RP(r i − r̄ j )+←→
�μ(r i ,r j ),

(A1)

where r̄ j = (x j , y j ,−z j )T is the image position of particle j .
In Eq. (A1), the definition of the Blake tensor (Eq. (2)) as well

as of the RP tensor20

←→
μ RP(r) = 1

8πηr

[←→
1 + r ⊗ r

r2

]
+ a2

4πηr3

[←→
1
3

− r ⊗ r
r2

]
,

(A2)

were used. Compared to the case of an unbounded fluid,
the hydrodynamic drag on bead i resulting from an exter-
nal force acting on bead j is thus modified by two terms:
the RP-interaction with the image of bead j [second term in
Eq. (A1)] and the RP-level of the Stokes and source doublets
[cf. Eqs. (4) and (5)] at the position of the image

←→
�μ(r i , r j ) ≡ [ (

1 + a2

6
∇2

r + a2

6
∇2

r ′

) (←→
μ D(r − r̄ ′)

−←→
μ SD(r − r̄ ′)

)]
r=r i ,r ′=r j

, (A3)

for which we report the explicit entries. Note that our expres-
sions differ from a previously reported version of the tensor.37

The indices α �= β ∈ {x, y} and z specify the entries of the

matrix
←→
�μ, and the elements of the vectors r i = (xi , yi , zi )T ,

r j = (x j , y j , z j )T , and R = (Rx , Ry, Rz)T . The diagonal ma-
trix entries are given by

�μαα = 1
4πη

(−zi z j

R3

(
1 − 3 R2

α

R2

)
+ a2 R2

z

R5

(
1 − 5 R2

α

R2

))
,

(A4)

�μzz = 1
4πη

(
zi z j

R3

(
1 − 3 R2

z

R2

)
− a2 R2

z

R5

(
3 − 5 R2

z

R2

))
,

(A5)

the off-diagonal ones read

�μαβ = 1

4πη

(
3zi z j Rα Rβ

R5
− 5a2 Rα Rβ R2

z

R7

)
, (A6)

�μαz = 1

4πη

(
z j Rα

R3

(
1−3

zi Rz

R2

)
− a2 Rα Rz

R5

(
2−5

R2
z

R2

))
,

(A7)

�μzα = 1

4πη

(
z j Rα

R3

(
1 + 3

zi Rz

R2

)
− 5

a2 Rα R3
z

R7

)
. (A8)

Altogether, HI described by Eqs. (A1)–(A8) are equivalent
to the expressions in Ref. 19. Note the following typo in a
previous publication by Kim and Netz:18 in Eq. (2.14), the
plus sign in front of the last line should be replaced by a minus
sign in order to obtain the above expressions.

2. Preaveraged form of the hydrodynamic tensor

For the two-dimensional version of the MFT in Sec. III B,
the 2 × 2-submatrix of ←→

μ RPB corresponding to the x- and y-
coordinates is preaveraged by the help of the two-dimensional
Gaussian probability distribution given in Eq. (26). The
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right-hand side of Eq. (25) yields

μRPB
avg /μ0 =

√
π (9σ +4)erfc

(
2√
σ

)
8σ 3/2

− e−4/σ

4σ
+ e−4/σ

4σ 3
(
z2+1

)5/2

×(σ 2 + σ (7σ + 32)z2 + (15σ 2 + 80σ + 64)z4

+2(3σ 2 + 36σ + 64)z6 + 8(3σ + 8)z8) −
√

π

8σ 7/2

×e
4z2

σ (32(3σ + 8)z4 + 4σ (9σ + 32)z2

+σ 2(9σ + 4))erfc

(
2

√
z2 + 1

σ

)
, (A9)

where the mean squared distance between s and s ′ [Eq. (26)]
is denoted by σ ≡ σ (|s − s ′|), and where for convenience
we have set a = 1. Note, that the positive exponential in the
penultimate line of Eq. (A9) is a source of numerical error for
values z � 25 a when using double precision numbers; in this
case an asymptotic expansion of the above expression for the
limit z → ∞ can be used instead.
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