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ABSTRACT: Genes and proteins regulate cellular functions
through complex circuits of biochemical reactions. Fluctuations
in the components of these regulatory networks result in noise
that invariably corrupts the signal, possibly compromising
function. Here, we create a practical formalism based on ideas
introduced by Wiener and Kolmogorov (WK) for filtering noise
in engineered communications systems to quantitatively assess
the extent to which noise can be controlled in biological
processes involving negative feedback. Application of the theory,
which reproduces the previously proven scaling of the lower
bound for noise suppression in terms of the number of signaling events, shows that a tetracycline repressor-based negative-
regulatory gene circuit behaves as a WK filter. For the class of Hill-like nonlinear regulatory functions, this type of filter provides
the optimal reduction in noise. Our theoretical approach can be readily combined with experimental measurements of response
functions in a wide variety of genetic circuits, to elucidate the general principles by which biological networks minimize noise.

The genetic regulatory circuits that control all aspects of life
are inherently stochastic. They depend on fluctuating

populations of biomolecules interacting across the crowded,
thermally agitated interior of the cell. Noise is also exacerbated
by low copy numbers of particular proteins and mRNAs, as well
as variability in the local environment.1−8 Yet the robust and
reproducible functioning of key systems requires mechanisms
to filter out fluctuations. For example, regulating noise is
relevant in stabilizing cell-fate decisions in embryonic develop-
ment,9 prevention of random switching to proliferating states in
cancer-regulating miRNA networks,10 and maximization of the
efficiency of bacterial chemotaxis along attractant gradients.11

Comprehensive analysis of yeast protein expression reveals that
proteins involved in translation initiation, ribosome formation,
and protein degradation have lower relative noise levels,12

suggesting natural selection could favor noise reduction for
certain essential cellular components.13,14

A common regulatory motif capable of suppressing noise is
the negative feedback loop,1,2,15−21 as has been explicitly
demonstrated in synthetic gene circuits.1,16,17 Feedback path-
ways for a given chemical species can be mediated by numerous
signaling molecules, each with its own web of interactions and
stochastic characteristics that determine the ultimate effective-
ness of the system in damping the fluctuations of the target
population and maintaining homeostasis. Thus, uncovering
generic laws governing the behavior of such control networks is
difficult. A major advance was made by Lestas, Vinnicombe,
and Paulsson (LVP),22 who showed that information theory
can set a rigorous lower bound on the magnitude of
fluctuations within an arbitrarily complicated homeostatic
negative feedback network. Since the bound scales like the
fourth root of the number of signaling events, noise reduction is

extremely expensive. This underscores the pervasiveness of
biological noise, even in cases where there may be evolutionary
pressure to minimize it.
The existence of a rigorous bound raises a number of

intriguing issues. Can a biochemical network actually reach this
lower bound, and thus optimally suppress fluctuations? What
would be the dynamic behavior of such an optimal system, and
how would it depend on the noise spectrum of the system
components? Here we answer these equations using a theory
related to the optimal linear noise-reduction filter, developed by
Wiener23 and Kolmogorov.24 Though the original context of
Wiener−Kolmogorov (WK) filter theory was removing noise
from corrupted signals in engineered communications systems,
it has become a powerful tool for characterizing the constraints
on signaling in biochemical networks.25,26 Recently, we showed
that the action of kinase and phosphatase enzymes on their
protein substrates, the basic elements of many cellular signaling
pathways, can in fact effectively be represented as an optimal
WK filter.25 The WK theory also describes how systems like E.
coli chemotaxis can optimally anticipate future changes in
concentrations of extracellular ligands.26 Although the classic
WK theory is strictly defined for linear filtering of continuous
signals (a reasonable approximation for certain biochemical
networks), it can also be extended to yield constraints in the
more general case of nonlinear production of molecular species
with discrete population values.25
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Interestingly, for a broad class of systems the WK linear
solution turns out to be the global optimum among all
nonlinear or linear networks, allowing us to delineate where
nonlinearity is potentially advantageous in biochemical noise
control. Most importantly, since the WK theory is formulated
in terms of experimentally accessible dynamic response
functions, it also provides a design template for realizing
optimality in synthetic circuits. As an illustrative example, we
predict that a synthetic autoregulatory TetR loop, engineered in
yeast,27 can be fine-tuned to approximate an optimal WK filter
for TetR mRNA levels. Though a simple design, similar filters
could be employed in nature to cope with Poisson noise arising
from small copy numbers of mRNAs, often on the order of 10
per cell.28 Based on the application of the theory to the
synthetic gene network, we propose that the extent of noise
reduction in biological circuits is determined by competing
factors such as functional efficiency, adaptation, and robustness.

■ RESULTS

To make the paper readable and as self-contained as possible,
many of the details of the calculation are relegated to the
Supporting Information (SI). The main text contains only the
necessary details needed to follow the results without the
distraction of the mathematics.
Linear response theory for a general control network.

To motivate the WK approach for a general control network,
we start with the simple case where two species within the
network are explicitly singled out:22 a target R with time-
varying population r(t) fluctuating around mean r, and one of
the mediators in the feedback signaling pathway P, with
population p(t) varying around p. We assume a continuum
Langevin description of the dynamics,15,18,29,30 where the rate

α ̇ = +α αt k t n t( ) ( ) ( ) (1)

for α = r or p, can be broken down into deterministic (kα) and
stochastic (nα) parts. The function kα(t) encapsulates the entire
web of biochemical reactions underlying synthesis and
degradation of species α, and can be an arbitrary functional
of the past history of the system up to time t. It is typically
divided into two parts, kα(t) = kα

+(t) − kα
−(t), corresponding to

the production (+) and destruction (−) rates of the species α.
The term nα(t) is the additive noise contribution, which can
also be divided into two parts, nα(t) = nα

int(t) + nα
ext(t). The first

is the “intrinsic” or shot noise, arising from the stochastic

Poisson nature of the α generation, η= ̅α α αn t k t( ) 2 ( )int , where
kα is the mean production rate, or equivalently the mean
destruction rate, kα = kα

+(t) = kα
−(t), and ηα(t) is a Gaussian

white noise function with correlation ηα(t) ηα′(t′) = δαα′δ(t−t′).
The second part, nα

ext(t), is “extrinsic” noise, which arises due to
fluctuations in cellular components affecting the dynamics of R
and P that are not explicitly taken into account in the two-
species picture. These could include mediators in the signaling
pathway, or global factors such as ribosome and RNA
polymerase levels. For simplicity, our main focus will be the
case of no extrinsic noise. However, we will show later how a
straightforward extension of the theory reveals that the same
system can behave like an optimal WK filter under a variety of
extrinsic noise conditions.
For small deviations δα(t) = α(t) − α from the mean

populations α, kα(t) can be linearized with respect to δα(t),

∫∑ δα= ′ − ′ ′ ′α
α

αα
′= −∞

′k t dt G t t t( ) ( ) ( )
r p

t

, (2)

where Gαα′(t) are linear response functions, which express the
dependence of kα(t) on the past history of δα′(t). The
functions Gαα′(t) capture the essential characteristic responses
of the control network to perturbations away from equilibrium
(Figure 1). In the static limit, Gαα′(t) have appeared in various

guises as gains,6 susceptibilities,19 or steady-state Jacobian
matrices,30 and in the frequency domain as loop transfer
functions.15,18 Feedback between R and P is encoded in the
cross-responses Grp(t) and Gpr(t). If the feedback occurs
through slow, intermediate steps, involving additional chemical
species besides R and P, the time-dependence of the cross-
response functions will reflect the time scales of those
intermediate processes. In the absence of intermediates, or if
those steps are very fast compared to the production/
degradation of R and P, the cross-responses depend only on
the instantaneous population deviations, and hence Gαα′(t) =
Gαα′ δ(t), where Gαα′ is a constant. In the simplest scenario, the
only nonzero self-responses Gαα(t) are decay terms, Gαα(t) =
−τα−1δ(t), where τα is the decay time scale for species α.
However, the theory works generally for more complicated self-
response mechanisms.

Control network as a noise filter. The connection
between the linearized dynamical description and WK filter
theory arises from comparing the original system to the case
where feedback is turned off (i.e., setting Grp(ω) or Gpr(ω) to
zero). Let us define a few terms to make the noise filter analogy
clear. Without feedback, the target fluctuations are δr0(t) ≡ s(t),
where we denote s(t) the signal. This is to distinguish it from
δr(t) in the original system, which is the output. The difference
between the two, which reflects the impact of the feedback
network, we express as δr(t) = s(t) − s(̃t), where s(̃t) is referred
to as the estimate. In this analogy, minimizing δr(t) requires a
feedback loop where the estimate s(̃t) is as close as possible to
the signal s(t). The only thing left to specify is the relationship
between s(̃t) and s(t).

Figure 1. Schematic of a complex signaling network with the target
species R and one mediator P singled out. In focusing on two species,
the action of all the other components is effectively encoded in four
response functionsGrr(t), Gpp(t), Grp(t), Gpr(t)that describe how
the entire dynamical system responds to perturbations in R and P.
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The dynamical system in eqs 1−2 takes a simple form in
Fourier space, where the fluctuations δα(ω) satisfy:

∑ωδα ω ω δα ω ω− = ′ +
α

αα α
′=

′i G n( ) ( ) ( ) ( )
r p, (3)

We solve eq 3 for δr(ω) and break up the R fluctuation into
two contributions, δr(ω) = s(ω) − s(̃ω), with the signal s(ω)
and estimate s(̃ω) given by

ω
ω

ω ω
ω ω ω ω= −

+
̃ = +s

n
G i

s H s n( )
( )

( )
, ( ) ( )[ ( ) ( )]r

rr
(4)

Here we have introduced a noise function n(ω),

ω
ω

ω
=n

n

G
( )

( )

( )
p

pr (5)

and a filter function H(ω):

ω
ω ω

ω ω ω ω ω ω
≡

− + +
H

G G

G G G i G i
( )

( ) ( )

( ) ( ) ( ( ) )( ( ) )
rp pr

rp pr rr pp

(6)

Thus, in the time domain the estimate s(̃t) is the convolution of
the filter function H(t) and a noise-corrupted signal y(t) ≡ s(t)
+ n(t),

∫̃ = ′ − ′ ′
−∞

∞
s t dt H t t y t( ) ( ) ( )

(7)

Equations 4−6 constitute a one-to-one mapping between the
linear response and noise filter descriptions of the system in
Fourier space. They relate the four filter quantities, s(ω), s(̃ω),
n(ω), and H(ω), to the four linear response functions Grr(ω),
Grp(ω), Gpr(ω), and Gpp(ω).
The entire noise filter system is illustrated schematically in

Figure 2. Note that the noise function in the filter analogy, n(t),
is related to np(t) in Fourier space as n(ω) = np(ω)/Gpr(ω). It
depends not just on the intrinsic P noise np(ω), but on the
larger network through the cross-response Gpr(ω). In the
optimization procedure below, we will keep the signal s(t) and
noise n(t) properties fixed, while varying H(t) to try to filter out
the n(t) component in y(t) in order to produce s(̃t) close to
s(t). This means fixing both Grr and Gpr, while allowing H to
vary through the remaining response functions Grp and Gpp.
Though we confine ourselves throughout this work to the case
of a dynamical system with a single target and mediator species,
one can easily generalize the entire approach to explicitly
include many mediators, which could potentially be involved in
a complex signaling pathway. The linearized dynamical system
in eqs 1−2 would still have the same form (with index α
running over all the species of interest), and the mapping onto
the filter problem for the target species would be analogous.
The only difference is that n(ω) and H(ω) would be more
complicated functions of the various individual noise terms
nα(ω) and the response functions Gαα′(ω) of the mediators. In
our reduced, two species description, the action of all the
unspecified chemical components is effectively included in the
four response functions described above, with their stochastic
effects contributing to the extrinsic noise. Figure 1 shows a
schematic of such a reduction. The fine-grained details of the
signaling pathways connecting our target R and mediator P,
potentially involving many interacting species, are encoded in
Grr, Gpp, Grp, and Gpr. As an example of how this two-species

reduction would work in practice, in SI section 2 we treat an
important example of a feedback loop involving multiple
mediators, representing a signaling cascade in series.

Wiener−Kolmogorov theory yields the optimal filter.
The WK optimization problem consists of minimizing

σ δ= r( )r
2 2, the variance of target fluctuations, which are

related to H(t), s(t), and n(t) through the frequency domain
integral31 (see derivation based on the Wiener−Khinchin
theorem in SI section 1):

∫σ ω
π

ω ω ω ω= | | +| − |
−∞

∞ d
H P H P

2
[ ( ) ( ) ( ) 1 ( )]r n s

2 2 2
(8)

where H(ω) is the Fourier transform of H(t), and Pn(ω), Ps(ω)
are the power spectral densities (PSD) of n(t) and s(t),
respectively, i.e. the Fourier transforms of their autocorrelation
functions. If Pn(ω) and Ps(ω) are given, the task is to minimize
σr
2 in eq 8 over all possible H(ω). The main constraint that
makes the solution mathematically difficult is that H(ω) must
correspond to a physically realizable control network, which
imposes the crucial restriction that the time-domain con-
volution function H(t) must be causal, depending only on the
past history of the input, H(t) = 0 for t < 0. The great
achievement of Wiener and Kolmogorov was to derive the form
of the optimal causal solution Hopt(ω):

ω
ω

ω
ω

=
*⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

H
P

P
P

( )
1
( )

( )
( )y

c
s

y
c

c

opt
(9)

The c super/subscripts refer to two different decompositions in
the frequency domain which enforce causality: (i) Any physical

Figure 2. Signal processing diagram illustrating noise suppression in a
negative feedback loop reinterpreted as a linear filter. The fluctuations
in the target species δr(t) (lower left) are expressed as δr(t) = s(t) −
s(̃t), where the raw signal s(t) (upper left) equals δr(t) in the absence
of feedback control, and the estimate s(̃t) (lower right) is the
contribution of the feedback loop. This estimate is given by the
convolution of a filter function H(t) (center) and the corrupted signal
s(t) + n(t), where n(t) is the noise (upper right). The goal of Wiener−
Kolmogorov theory is to find a causal H(t) such that the standard
deviation of δr(t) is minimized. All sample trajectories shown in the
figure are generated from numerically solving the linearized version of
the dynamical system in eq 10.
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PSD, in this case Py(ω) corresponding to the corrupted signal
y(t) = s(t) + n(t), can be written as Py(ω) = |Py

c(ω)|2. The factor
Py
c(ω), if treated as a function over the complex ω plane,

contains no zeros and poles in the upper half-plane (Im ω >
0).32 (ii) We also define an additive decomposition denoted by
{F(ω)}c (see SI section 1) for any function F(ω), which
consists of all terms in the partial fraction expansion of F(ω)
with no poles in the upper half-plane. In SI section 1, we
provide in detail a new derivation of eq 9, the heart of the WK
theory.
Optimal noise control in a yeast gene circuit with

feedback. To illustrate the nature of the optimal WK solution
we choose as a case study the yeast negative autoregulatory
gene circuit designed by Nevozhay et al.,27 drawn schematically
in Figure 3(a). The gene encoding for the TetR protein is

under the control of the PGAL1−D12 promoter, whose activity can
be repressed by binding TetR dimers. The strength of the
feedback can be modulated by changing the extracellular
concentration A of the inducer anhydrotetracycline (ATc),
which enters the cell, binds to TetR and prevents its association
with the promoter, thus weakening repression.
In order to analyze the TetR negative feedback gene circuit,

we start with the simple mathematical model introduced in ref
27, which provided results that are consistent with the
experimental data. The simplified model, which captures the
essence of the synthetic gene network, features as the main
variables the population of free intracellular TetR dimer, p(t),
and free intracellular ATc molecules, a(t). In addition to the
regulatory loop, the experimental gene circuit has a parallel
yEGFP reporter portion, which acts as a monitor of TetR

Figure 3. (a) Synthetic yeast gene circuit designed by Nevozhay et al.27 The TetR protein negatively regulates itself by binding to its own promoter.
The inducer molecule ATc associates with TetR, inhibiting its repressor activity. The subsequent panels show results for this gene circuit using the
linear filter theory applied to the dynamical model of eq 10, with experimentally derived parameters (Table 1). (b) Filter functions H(t) and Hopt(t),
sample signal s(t), and estimate s(̃t) time series for burst ratio B = 10 and three different values of extracellular ATc concentration A [ng/mL]. H(t)
is from eq 19, while Hopt(t) is from eq 18. The sample time series trajectories are numerical solutions of the linearized eq 10. On the right are the
resulting equilibrium probability distributions P(δr), where δr(t) = s(t) − s(̃t), which are Gaussians with variance σr

2. For A ≈ 54 ng/mL, the circuit
approximately functions as an optimal WK filter (H(t) is close to Hopt(t)), maximally suppressing fluctuations in the population levels of TetR
mRNA (minimizing σr

2/r). (c) Mean populations of free intracellular TetR mRNA, r, and TetR protein dimers, p. (d) The decay rates of free mRNA
and proteins, τr

−1 and τp
−1, which are related to the network self-response functions Grr and Gpp (both are constants in the frequency domain as shown

in eq 11). (e) Magnitude of the network cross-response, |Grp| (solid lines), plotted together with the optimal magnitude
τ| | = + +− −B(1 1 )prp

opt 1 1 (dashed lines). Filled circles mark the intersection defining A = Aopt, where the system behaves approximately like

an optimal WK filter. (f) Fano factor σr
2/r (solid lines), compared to the optimal WK value σ ̅ = + +r B/ 2/(1 1 )r ,opt

2 (horizontal dashed lines).
Filled circles mark the position A = Aopt.
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protein levels. Because we focus on the system as a noise filter
for the TetR mRNA population, and the yEGFP part does not
influence this analysis,27 we ignore the reporter circuit.
The production of the TetR dimers occurs in a single step,

with the autoregulation of the rate described by a repressory
Hill function. We divide this step into two parts, introducing as
an additional variable the population of TetR mRNA r(t). The
feedback loop (Figure 3(a)) consists of mRNA production at a
rate given by the Hill function κr(t) = κ0θ

n/(θn + pn(t)),
followed by TetR dimer generation at a rate given by κp r(t).
The degradation/dilution of the mRNA and dimers is modeled
through decay terms γrr(t) and γpp(t). All other chemical
substeps involved in this loop are comparatively fast, such as
TetR dimerization, the binding of the repressor to the
individual promoter sites, or the role of RNAP and ribosomes
in the transcription and translation processes. We thus confine
ourselves to an effective two substep description to illustrate the
filter theory, though the stochastic effects of additional
complexity can be approximately treated through general
“extrinsic” noise terms incorporated into nr(t) and np(t).
The main experimental variable that allows tuning of the

yeast gene network behavior is the external ATc concentration
A, which is assumed to be time independent. As illustrated in
Figure 3(a), there is an influx ΦA of ATc molecules into the
cell. Once inside, the ATc molecules associate with the TetR at
a rate βa(t)p(t). Additional loss of intracellular ATc through
degradation, outflux, and dilution is modeled through an
effective decay rate γaa(t). We assume that the dissociation of
ATc from TetR occurs on long enough time scales that it can
be ignored. Since the influx/association/outflux of ATc is fast
compared to the transcription and translation processes of the
main feedback loop, we further assume that a(t) instanta-
neously equilibriates at the current value of p(t). Thus, the
dependence of a(t) on p(t) is determined by equating the influx
and total loss rate, which leads to a(p(t)) = Φ A/ (γa + βp(t)).
For the model described above, the dynamical equations for

r(t) and p(t) are,

γ
κ θ

θ

γ κ
β

γ β

̇ = − +
+

+

̇ = − + −
Φ
+

+

r t r t
p t

n t

p t p t r t
Ap t

p t
n t

( ) ( )
( )

( )

( ) ( ) ( )
( )
( )

( )

r

n

n n r

p p
a

p

0

(10)

The parameters, with values derived from experimental
fitting,27 are listed in Table 1. The only quantity that is not
independently known from the fit is the rate κp, which we allow
to vary in the range κp/γr ≡ B = 2−10, comparable to typical
experimentally measured protein burst sizes.33 The noise terms
are γ η= ̅n t r t( ) 2 ( )r r r and κ η= ̅n t r t( ) 2 ( )p p p , assuming

only intrinsic noise contributions. Setting the right sides of eq
10 to zero, and averaging over nr(t) and np(t), we numerically
solve for the equilibrium values r and p as a function of external
ATc concentration A [Figure 3(c)]. For A = 0, the promoter is
nearly fully repressed, but with increasing A, the mean
population p of free TetR dimers is reduced, weakening the
repression and boosting the mean mRNA population r.
Changing A allows us to explore a wide range of control
network behavior. Note that since p depends on B only through
the product κ0 B, and the value of this product is fixed at a
constant value from the experimental fit (Table 1), p is
independent of B. On the other hand, r, which is proportional
to κ0, is inversely proportional to B.

Linearizing eq 10 around r and p, we extract the following
frequency domain response functions:

ω τ γ ω
κ θ
θ

ω τ γ
βγ

γ β
ω κ

= − = − = − ̅
+ ̅

= − = − −
Φ

+ ̅
=

−
−

−

G G
n p

p

G
A

p
G

( ) , ( )
( )

,

( )
( )

, ( )

rr r r rp

n n

n n

pp p p
a

a
pr p

1 0
1

2

1
2

(11)

All the functions are constants in the frequency domain. Here τr
and τp are effective decay times for the mRNA and proteins,
respectively. The value of τr is fixed, and sets the intrinsic time
scale of mRNA fluctuations, but τp and Grp depend on p, which
is a function of the external ATc concentration A. In fact,
association with intracellular ATc, described by the second term
in the Gpp expression above, is the dominant form of decay for
the free TetR dimers. Figure 3(d) plots the effective decay
constants τr

−1 and τp
−1 as a function of A. Except for A ≲8 ng/

mL we are in the regime where τp
−1 ≫ τr

−1, which is relevant in
simplifying the optimality condition for Grp(ω) discussed
below.
The optimal filter calculation for the TetR gene circuit

depends on the linear response functions of eq 11. Using eqs 4
and 5, we obtain the following power spectra for the signal and
noise in the absence of extrinsic noise:

ω
ω ω

ω ω ω ω
τ
ωτ

ω
ω ω

ω ω
τ

=
−

+ − −
= ̅

+

=
−
−

= ̅

P
n n

G i G i
r

P
n n

G G
r
B

( )
( ) ( )

( ( ) )( ( ) )
2

1 ( )
,

( )
( ) ( )

( ) ( )
2

s
r r

rr rr

r

r

n
p p

pr pr

r

2

(12)

where the burst ratio B ≡ κpτr is the mean number of proteins
synthesized per mRNA during the lifetime τr. The problem is to
evaluate eq 9 for Hopt(ω). The sum of signal plus noise, y(ω) =
s(ω) + n(ω), has a power spectrum Py(ω) = Ps(ω) + Pn(ω),
which we can rewrite as follows:

Table 1. Parameter Values for the Dynamical Model of the
Yeast Synthetic Gene Circuit (Eq 10)a

Parameter Value

n 4
θ 0.44 nM V
γr 3.5 h−1 b

γp 0.12 h−1

γa 1.2 h−1

β 3.6 nM−1 h−1V−1

Φ 0.6 h−1 V
κ0 50 nM h−1 V B−1 c

A 0−500 ng/mLd

aThe cell volume V is assumed fixed. Unless otherwise noted, all values
are taken from the experimental fit of ref 27. bReference 34. cThe burst
ratio B ≡ κp/γr. Though not independently determined by the
experimental fit, we assume that B is in the range B = 2−10.33 dFor
external ATc concentration A, 1 ng/mL corresponds to 2.25 nM.
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ω τ
ωτ

τ ωτ
ωτ

= ̅ +
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= ̅ + −
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⎡
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⎤
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⎝
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2

1/2 2

(13)

The expression within the absolute value brackets is zero only
at ω τ= − +−i B1r

1 , and has a simple pole at ω = −iτr−1.
Since all the zeros and poles are in the lower complex ω half-
plane, it satisfies the criterion for the causal term in the
factorization Py(ω) = |Py

c(ω)|2. Thus

ω
τ ωτ
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The other causal term in eq 9 involves the additive
decomposition {Ps(ω)/Py

c(ω)*}c. This is calculated by looking
at the partial fraction expansion of Ps(ω)/Py

c(ω)*:

ω
ω

τ
ωτ ωτ

τ
ωτ

τ
ωτ

*
= ̅

− + +

= ̅
− + +

+ ̅
+ + + +

P
P

r B
i B i

r B
i B

r B
B B i

( )
( )

(2 )
(1 )( 1 )

(2 )
(1 )( 1 1)

(2 )
(1 1 )( 1 )

s

y
c

r

r r

r

r

r

r

1/2

1/2

1/2

(15)

Of the two terms in the partial fraction expansion, only the first
has poles solely in the lower complex ω half-plane. Hence, it is
the only one that contributes to {Ps(ω)/Py

c(ω)*}c:
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(16)

Inserting eqs 14 and 15 into eq 9, we finally find that the
optimal filter is

ω
ωτ

= + −
+ −

H
B

B i
( )

1 1
1 r

opt
(17)

Transforming Hopt(ω) into the time domain, we find

τ τ= − Θτ− − −H t t( ) ( )e ( )r
t

opt avg
1 1 / avg

(18)

where τ τ= + B/ 1ravg , and Θ(t) is a unit step function
ensuring that the filter operates only on the past history of its
input. For B ≫ 1 the prefactor in eq 18 is ≈ τavg

−1, and Hopt(t)
has a straightforward interpretation: it approximately acts as a
moving average of the corrupted signal y(t) = s(t) + n(t) over a
time scale τavg. In order to get the best estimate s(̃t), the
averaging interval τavg can neither be too long, since it would
blur out the features of the signal s(t) (which vary on the time
scale τr), nor too short, since it would be ineffective at
smoothing out the noise distortion n(t). Hence, there must
exist an optimum τavg, which is naturally proportional to τr, the
main time scale for the mRNA.
In Figure 3(b), we show how the noise filter properties of the

system vary with A for a burst ratio of B = 10. The filter
function H(t) (solid red curve) differs substantially from
Hopt(t) (dotted red curve) for large and small A, but approaches
the optimal form near A = 54 ng/mL. Consequently, at this

value of A we get the closest correspondence between the
plotted sample trajectories of signal s(t) (cyan curve) and
estimate s(̃t) (blue curve). Similarly, the equilibrium probability
distribution of the output, P(δr), shown to the right of the
trajectories, exhibits the smallest Fano factor σr

2/r. The latter is
a measure of noise magnitude, and has a reference value of
unity if mRNA production was a pure Poisson process, as
would be the case without feedback. Optimality is realized in
the intermediate A regime of partial repression, where the R to
P responsiveness, as measured by |Grp|, is large. Effective noise
suppression requires that R be sensitive to changes in P, so that
information about R fluctuations can be transmitted through
the negative feedback loop.
In order to understand the optimality condition for H(t) in

more detail, let us look at the explicit expression for H(t) in the
TetR system, given by the inverse Fourier transform of eq 6
with the response functions of eq 11:

κ

ω ω
=

−
− Θω ω− −H t

G
e e t( ) ( ) ( )rp p t t

1 2

1 2

(19)

where ω1, ω2 are the two ω roots of the denominator in eq 6.
Assuming τp ≪τr (which holds good except for small values A
≲8 ng/mL, as seen in Figure 3(d)), we can directly show the
approach of H(t) to optimality at a specific intermediate value
of Grp. When Grp equals τ τ= − + +B B( , ) 1/( (1 1 ))p prp

opt ,
the roots ω1 ≈ τavg

−1, ω2 ≈ τp
−1 + τr

−1 − τavg
−1, up to corrections of

order τp/τr
2. In this case, eq 19 becomes

τ τ τ
| ≈ −

+ −

τ τ τ
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(20)

where the factor in the brackets on the right equals 1 in the
limit τp → 0 for all t > 0. Up to this correction factor, we thus
expect the system to behave optimally at A = Aopt, defined by
the condition τ=G B( , )prp rp

opt , so long as Aopt is large enough

to satisfy τp ≪ τr. Figure 3(e) shows Grp and rp
opt curves for B =

2, 5, and 10, with dots marking the intersection points that
define Aopt for each B. As explained above, |Grp| is small at small
and large A, and reaches a maximum in between. At fixed B,

τ τ| | ∝ −B( , )p prp
opt 1, so it increases monotonically with A, as

larger concentrations of the inducer increase the effective decay
rate of free proteins. Thus, for each B there is a single
intersection point Aopt at an intermediate concentration of the
inducer.
Figure 3(f) shows the Fano factor σr

2/r versus A for various B.
As the control network approximates optimality at Aopt for each
B, the Fano factor nears its minimum, close to the theoretical
limit marked by the horizontal dashed lines. This limit is the
minimal possible σr

2/r, calculated from eq 8 using Hopt(t) from
eq 18:

σ

̅
=

+ +
≥

+ +r B B
2

1 1
2

1 1 4
r ,opt
2

(21)

A few comments concerning the above equation are in order.
(1) The result on the far right-hand side is the rigorous lower
bound derived by LVP.22 In their case, the feedback mechanism
through the rate function kr(t) could be any causal functional of
p(t), linear or nonlinear. The Fano factor of the optimal linear
filter differs in form only by the coefficient of B, and is always
within a factor of 2 of the lower bound for any value of B. (2)
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For Gaussian-distributed signal s(t) and noise n(t) time series,
the linear filter is optimal among all possible filters.31 If the
system fluctuates around a single stable state, and the copy
numbers of the species are large enough that their Poisson
distributions converge to Gaussians (mean populations ≳10),
the signal and noise are usually approximately Gaussian. This is
a wide class of systems where the rigorous lower bound (the
last term in eq 21) can never be achieved. In other words, here
the WK filter yields the most efficient feedback mechanism.
Although, as pointed out by LVP, nonlinearity could lead to
additional noise reduction, the benefits are likely to be
restricted to those systems where the signal and/or noise are
substantially non-Gaussian. However, since the form of the
optimal control network has not been found in the general
nonlinear case, it remains an interesting open question whether
the LVP bound can actually be reached even within this
category of systems. We will return to this issue in the next
section. (3) The parameter B is the key determinant of noise
reduction. For B ≪ 1, there are not enough signaling events to
control the mRNA fluctuations, and as B → 0 we approach
σr,opt
2 /r → 1, the no-feedback Poisson result. In the limit B ≫ 1
signaling is effective, and the Fano factor decreases with B as
σ ̅ ≈r B/ 2/r ,opt

2 . For large enough B we approach perfect
control, but at extreme expense: the standard deviation of the
mRNA fluctuations σr,opt ∝ B−1/4, the same scaling derived by
LVP.
WK theory constrains the performance of a broad

class of nonlinear, discrete regulatory networks. The
results in Figure 3 rely on a linearized, continuum approach to
the TetR dynamical system. To assess if the conclusions based
on the WK optimal filter hold if these approximations are
relaxed, we first performed kinetic Monte Carlo simulations of
the full nonlinear system (eq 10) using the Gillespie
algorithm.35 We chose a cell volume of V = V0 = 60 fL, within
the observed range for yeast,36 which corresponds to the mean
populations r and p shown in Figure 4(a) as a function of A.
(For example, at A = Aopt = 62.7 ng/mL when B = 5, r ≈ 84 and
p ≈ 11. In addition to the nonlinearity, the discrete nature of
the populations in the simulation might play a role at these low
copy numbers.) The numerical results for the Fano factor σr

2/r
are plotted in Figure 4(b) at B = 2, 5, 10, for V = V0 (circles)
and also for comparison at a larger volume V = 10V0 (squares).
The blue curves show the linear theory results, and the dashed
lines are the optimality predictions for σr, opt

2 / r. Although
nonlinearity and discreteness effects do change the results, the
linear theory gives a reasonable approximation, and the
minimum is still near Aopt. The feedback mechanism is
nonlinear in the simulations, but it does not do better than
the linear predictions for σr, opt

2 /r for the parameters used to
describe the experimental results. Though the intrinsic
population noise is Poisson-distributed in the simulations, the
Poisson distribution is very close to Gaussian, even for copy
numbers as low as ∼ (10). Since the linear filter is the true
optimum for a Gaussian-distributed signal and noise,31 we do
not expect improvements in noise suppression by employing a
nonlinear version. In the opposite limit of large copy numbers,
V → ∞, the continuum approximation should be valid, and
population fluctuations increasingly negligible relative to the
mean. Thus, the linear theory should directly apply in this limit,
and indeed we see that for V = 10V0 the discrepancies between
numerical and theory results are substantially reduced (Figure
4(b)). It is worth emphasizing, that even at the realistically

small cell volume V0, the linear theory retains much of its
predictive power. More generally, the conditions for WK
optimality do not have to be perfectly satisfied in order for the
filter to perform close to maximum efficiency. There is an
inherent adaptability and robustness in near-optimal networks,
as reflected in the broad minima of σr

2/r as a function of A
(Figure 4(b)).
The semiquantitative agreement between the linearized

theory and the simulation results displayed in Figure 4 still
leaves open the possibility that some type of nonlinear, discrete
filter, not described by the experimentally fitted parameters of
the TetR gene network, could perform better than the WK
optimum at sufficiently small volumes. Figure 5 plots both the
WK value for the Fano factor (solid curve) and the rigorous
lower bound of LVP (dashed curve) as a function of B (eq 21).

Figure 4. Results of simulation and theory for the yeast synthetic gene
circuit,27 as a function of extracellular ATc concentration A. (a) Mean
populations of free TetR mRNA r and TetR dimer p, assuming a cell
volume V0 = 60 fL. (b) The Fano factor σr

2/r for burst factor B = 2, 5,
10, as predicted by the linear filter theory (solid lines), versus
stochastic numerical simulations at two different volumes, V = V0
(circles) and V = 10V0 (squares). The WK filter theory predicts the
minimal Fano factor σopt

2 /r given by eq 21 (horizontal dashed lines).
The system can be tuned to approach optimality near a particular Aopt

obtained by the condition =Grp rp
opt (filled circles).

Figure 5. Fano factor σr
2/⟨r⟩ as a function of burst ratio B. The solid

curve is the optimal result predicted by the WK linear theory, and the
dashed curve is the rigorous lower bound derived by LVP.22 Symbols
show numerical optimization for the generalized nonlinear TetR
feedback system (eq 22) at two volumes, V = V0 and V = 0.1V0.

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.6b02093
J. Phys. Chem. B 2016, 120, 6166−6177

6172

http://dx.doi.org/10.1021/acs.jpcb.6b02093


The above question can be posed as follows: is it possible to
achieve a Fano factor that falls between the two curves by
taking advantage of nonlinearity and discreteness? Ideally, one
should do an optimization over all possible nonlinear regulatory
functions that could describe feedback between the TetR
protein and mRNA. In full generality, such an optimization
appears intractable, but one can tackle a limited version of the
nonlinear optimization. We will confine ourselves to Hill-like
regulatory functions, which describe the experimental behavior
of many cellular systems,37 and explore whether it is possible to
find any scenario where this type of nonlinear feedback
outperforms the linear WK optimum. We consider the
following generalized TetR feedback loop:

γ

γ κ

̇ = − + +

̇ = − − Γ + +

r t r t K p t n t

p t p t p t r t n t

( ) ( ) ( ( )) ( ),

( ) ( ) ( ( )) ( ) ( )

r r r

p p p p (22)

where γ η= ̅n t r t( ) 2 ( )r r r and κ η= ̅n t r t( ) 2 ( )p p p . This

system has two Hill-like regulatory functions,
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n n
1 1

1

2

2

1

1 1

2
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involving arbitrary non-negative parameters Ai, ni, θi, i = 1, 2.
The original TetR system (eq 10) is a special case of the
equations above with

κ θ θ β

θ γ

= = = = Φ =

=

A n n A A n, , , , 1,

a

1 0 1 1 2 2

2 (24)

The production function Kr(p) is a monotonically decreasing
function of p, as is expected for negative feedback, while Γp(p)
is monotonically increasing, a generalization of some regulatory
network which effectively removes the TetR protein from the
feedback loop (the role played by ATc binding in the
experimental system). With these monotonicity constraints,
there is always only one steady-state solution r and p to eq 22.
The optimization consists of searching for Kr(p) and Γp(p)

that minimize the Fano factor σr
2/⟨r⟩. The following quantities

are fixed during the search: the degradation rates γr, γp, the P
production rate κp (or equivalently the burst ratio B = κp/γr),
and the steady state values r, p. Note that in the general
nonlinear case, the steady state values do not necessarily
coincide with the mean values ⟨r⟩, ⟨p⟩, since the equilibrium
distributions are generally asymmetric with respect to the
steady state. Fixing r and p during the optimization is one way
to set an overall copy number scale, to investigate the role of
discreteness. It turns out that the optimization results described
below end up being independent of r and p. In terms of the Hill
function parameters, fixing r and p means setting A1 and A2 to
the following values,

θ γ θ

γ κ θ

= ̅ + ̅
= ̅ ̅ − ̅ + ̅

−

−

A r p

A p p r p
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2 2

1 1 1

2 2 2
(25)

Thus, the goal of optimization is to minimize σr
2/⟨r⟩ over the

four remaining free parameters: n1, θ1, n2, θ2.
In order to carry out this minimization, one needs an efficient

procedure to calculate σr
2/⟨r⟩ from eq 22, keeping both the full

nonlinearity of the dynamical system, and the discreteness of
the r(t) and p(t) populations, which means going beyond the
continuum Langevin description in eq 22. The system can

always be simulated through the Gillespie algorithm,35 and
accurate estimates of ⟨r⟩ and σr

2 determined from sufficiently
long trajectories. However, this approach is too slow for
searching over the four-dimensional parameter space, since
each distinct set of parameters would require a separate long
simulation run. An equivalent, faster alternative is to directly
solve the system’s master equation for the steady state
probability distribution, which then yields ⟨r⟩ and σr

2. The
joint probability distribution Pr,p(t) of finding r mRNAs and p
proteins at time t is governed by the master equation,
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The steady state distribution Pr,p
s is the solution obtained by

setting to zero the right-hand side of the above equation, which
we denote r p, :
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(27)

The result is linear in the components Pr,p
s for various r and p,

and thus the set ={ 0}rp for r = 0, 1, ... and p = 0, 1, ...
constitutes a linear system of equations for Pr,p

s . The master
equation can be solved by spectral methods, which are generally
more efficient than brute force Gillespie simulations.38

However, we use a different approach, described below, to
solve eq 27, which is sufficiently fast for our numerical
optimization purposes. Since r and p can take on any integer
values between 0 and ∞, we truncate the system to focus only
on the non-negligible Pr, p

s , in other words (r,p) within several
standard deviations of the mean (⟨r⟩, ⟨p⟩). Specifically, we keep
only those equations = 0rp which involve rmin ≤ r ≤ rmax and
pmin ≤ p ≤ pmax. The largest truncation range required for
accurate results was rmax − rmin = 100 and pmax − pmin = 50. All
Pr,p
s outside the range which appear in the truncated system of

equations are set to a positive constant ϵ > 0. (The precise
value of ϵ is unimportant since the distribution is subsequently
normalized, and the truncation range is chosen large enough so
that the boundary condition does not significantly affect the
outcome.) The resulting finite linear system, which is sparse,
can be efficiently solved using an unsymmetric-pattern
multifrontal algorithm.39 Knowing Pr,p

s , we then directly
calculate the moments of the distribution to find ⟨r⟩ and σr

2.
The numerical accuracy of the procedure is verified by
comparison to Gillespie simulation results.
In order to set a starting point for each round of nonlinear

optimization, we use the following initialization procedure: we
take the original TetR system at a given volume V and burst
ratio B (fixing the Hill function parameters according to eq 24)
and find the ATc concentration Amin where σr

2/⟨r⟩ is smallest,
evaluating the Fano factor using the linear solver described
above. The r and p at this concentration are then chosen to be
fixed constants for the nonlinear optimization, where we vary
the parameters n1, θ1, n2, θ2 from the initial values given by eq
24 to minimize σr

2/⟨r⟩. The minimization is carried out using
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Brent’s principal axis method,40 which is feasible due to the fast
evaluation of ⟨r⟩ and σr

2 at each different parameter set through
the linear solver.
Figure 6 shows results of a typical minimization run, where

the initial system is at volume V = V0 with B = 10, with a
corresponding Amin = 50 ng/mL. The dashed lines in Figure
6(a) and (b) show the Hill functions Kr(p) and Γp(p) of the
original TetR system at these parameter values, and the heat
map in Figure 6(c) represents the associated steady-state
probability distribution Pr,p

s . The dashed lines superimposed on
the heat map are the loci of solutions to r(̇t) = 0 and p ̇(t) = 0
(the right-hand sides of eq 22 set to zero), which intersect at
the steady state (r, p). The Fano factor for this distribution,
which represents the best the TetR system can perform given
the experimentally fitted parameters, is σr

2/⟨r⟩ = 0.525. This is
a bov e t h e l i n e a r WK op t imum fo r B = 10 ,

+ + =B2/(1 1 ) 0.463, and significantly larger than the
rigorous LVP lower bound of + + =B2/(1 1 4 ) 0.270.
Once we relax the experimental constraints, and carry out the
numerical minimization, the Fano factor decreases. The solid
lines in Figure 6(a) and (b) show Kr(p) and Γp(p) after several
steps of the minimization algorithm, and Figure 6(d) shows the
corresponding Pr,p

s . The Hill functions have become very steep
steps around p, while the average of the distribution ⟨r⟩ has
been pushed above r. The probabilities Pr,p

s for p < p0 become
negligible, where ≡ ⌊ ̅ ⌋p p0 is the largest integer value below p.
For p > p0, Pr,p

s rapidly decay to zero. The Fano factor, σr
2/⟨r⟩ =

0.472, approaches closer to the linear WK optimum, but is still
above it. If we allow the minimization to proceed, these trends
continue: at each iteration the Hill functions get steeper,⟨r⟩

increases, Pr,p
s for p < p0 tends to zero, and σr

2/⟨r⟩ approaches
arbitrarily close to the linear WK optimum from above.
In fact, the same behavior is seen irrespective of the volume

V and burst ratio B used to define the initial point of the
optimization. Figure 5 shows the results of nonlinear
optimization for B = 2−10 at two volumes, V = V0 and V =
0.1V0. Even for the smallest volume, the nonlinear optimization
results can get arbitrarily close to the WK optimum, but never
do better. No generalized nonlinear system based on Hill
function regulation brings us close to the theoretically possible
LVP lower bound. This overall conclusion holds even when we
change the functional form for the generalized feedback. We
tried two alternatives: (i) using sigmoidal (logistic) functions
instead of Hill functions; (ii) expanding Kr(p) and Γp(p) in a
Taylor series around p, truncating after the third order term,
and minimizing with respect to the Taylor coefficients. In both
cases numerical minimization of the Fano factor led to similar
step-like behavior for Kr(p) and Γp(p), and the Fano factor
tended to WK optimum from above.
From the Pr,p

s distribution in Figure 6(d) we see that the step-
function limit leads to a system which is highly nonlinear along
the p axis: in fact the gene network spends most of its time at p
= p0, just below the sudden change in regulation due to the
steep Hill functions, and p > p0 just above the sudden
regulatory change. The feedback on the TetR mRNA
population is mediated by p fluctuations between the two
regimes, resulting in threshold-like regulatory behavior.
Remarkably, despite this discrete, nonlinear character, the
network can still approach the efficiency of an optimal WK
linear filter. To gain a deeper understanding of how the step-
like regulation can match WK optimality, we used the

Figure 6. Results for numerical optimization of the generalized nonlinear TetR feedback system of eq 22, with starting parameters B = 10 and V =
V0. (a) The mRNA production regulation function Kr(p) in its initial form before optimization (dashed curve), and after several steps of the
minimization algorithm (solid curve). (b) Similar to (a), but showing the protein degradation function Γp(p). (c) Heat map of the steady-state
probability distribution Pr,p

s before optimization, corresponding to regulation governed by the dashed curves in the top panels. The nullclines r(̇t) = 0
and p ̇(t) = 0 are superimposed. (d) Similar to (c), but after several steps of the minimization algorithm, corresponding to regulation governed by the
solid curves in the top panels.

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.6b02093
J. Phys. Chem. B 2016, 120, 6166−6177

6174

http://dx.doi.org/10.1021/acs.jpcb.6b02093


numerical optimization results described above to posit a
limiting form of the nonlinear gene network that can be solved
analytically (details in SI Sec. 3). The analytic results explicitly
show that we can asymptotically approach the WK optimum
behavior from above, even in systems where the protein copy
numbers are very small. Thus, at least for a two-component
TetR-like system regulated by biologically realistic Hill
functions, the constraint derived from the WK theory has a
broader validity than one would guess from the underlying
continuum, linear assumptions. It thus becomes an interesting
and a nontrivial problem, left for future studies, to find an
example of a gene network where the rigorous lower bound of
LVP could be directly achieved.
Realizing optimality under the influence of extrinsic

noise. Extrinsic noise is ubiquitous and hence must also be
considered in any effective description of the control network.
Inevitably, certain cellular components are not explicitly
included in such a description, which in our case study could
include RNA polymerase, ribosomes, and transcription factors
that bind to the same promoter. Each of these components
have their own stochastic characteristics and may contribute
noise to a smaller or greater extent. Particularly for eukaryotes
like yeast, the extrinsic noise contribution may be significantly
larger than the intrinsic component.41,42 We adopt a simple
model for the extrinsic noise based on earlier approaches,16,18

which assume that it is band-limited at a low frequency τe
−1,

where τe is on the order of the cell growth time scale. The
justification is that higher frequency contributions to the
extrinsic noise are filtered out by the gene circuits associated
with its sources. This idea is consistent with the experimental
observation of extrinsic noise in protein production in E. coli,
which found long autocorrelation times for the extrinsic noise
on the order of the cell cycle period.43

For the TetR system, our theory is extended to the extrinsic
noise case in SI section 4, with the results illustrated in Figure 7.
The outcome is that a given TetR gene circuit, tuned
appropriately such that A = Aopt, can act as a WK filter for
an entire family of extrinsic noise scenarios. A single set of
parameters can approximately represent the optimal solution
for a variety of extrinsic inputs. This makes the WK concept a
versatile design tool for noise suppression in biological systems:
the same control network can act with maximum efficiency in a
variety of different contexts. It is possible that the requirement
of adaptability to a wide range of conditions has resulted in the
evolution of control networks acting as WK filters. It remains to
be seen whether nature has exploited this feature in vivo.

■ CONCLUSION
The TetR feedback loop is a concrete example of how a WK
filter can be implemented in a gene network driven by a
complex set of biochemical reaction rates, but the overall
approach outlined here has far reaching implications, thus
highlighting the appeal of engineering paradigms in biology.44

With the entire network complexity encoded in a handful of
response functions, we can derive fundamental limits and
design principles governing biological regulation. The key step
is to map the linear response picture onto a signal estimation
problem, whose solution is given by WK theory. This idea
allows us to predict the dynamic properties of the feedback
pathway required to optimally filter noise in a broad class of
negative feedback circuits. As already demonstrated in earlier
works,25,26 the mapping, and the potential utility of the WK
approach, is not unique to the negative feedback loop. Another

important byproduct of the theory is that the behavior of gene
circuits away from optimality can also be predicted. In this
sense, our practical approach goes beyond just obtaining
rigorous bounds, and allows us to characterize how close or far
gene networks are from optimality for biologically relevant
parameters.
We have derived response functions by linearizing a minimal

model extracted from experimental observations, but it is also
possible to directly apply small perturbations to a system, and
measure the resulting time-dependent changes in populations
of species. Recently, the yeast hyperosmolar signaling pathway
has been probed by perturbations in the form of salt
shocks.45−47 Despite the underlying complex nonlinear net-
work, the details of which are not completely characterized, a
linear response description quantitatively captures the
frequency-dependent behavior of the pathway over a wide
range of inputs. E. coli chemotaxis signaling also exhibits a linear
regime,48 where the fluctuation−dissipation relationship
between the system’s unperturbed behavior and its reaction
to external stimuli has been explicitly verified.
Linear response functions can thus become a fundamental

tool in analyzing biochemical circuits, analogous to their
established role in control engineering and signal processing.
More extensive experimental measurements will be critical in
this effort, in order to ascertain how varied the response
relationships between regulatory components are in nature.
Once we understand the essential dynamical building blocks
out of which a complex biological function is realized, we can
map out the hidden constraints that control the behavior of
living systems.

Figure 7. Comparison of simulation and theory results based on the
dynamical model (eq 10) of the yeast synthetic gene circuit,27 in the
presence of extrinsic noise given by SI eq 46. All quantities are plotted
as a function of extracellular ATc concentration A for the burst ratio B
= 5. Each set of curves shows the Fano factor σr

2/r, as predicted by the
linear filter theory (solid lines), versus stochastic numerical simulations
at two different volumes, V = V0 = 60 fL (circles) and V = 10V0
(squares). The two sets correspond to noise magnitudes cp = 80, cr =
23 and cp = 160, cr = 46. In both cases cr and cp are related through the
condition in SI eq 56, and the minimal Fano factor predicted by WK
filter theory (horizontal dashed lines) is modified as shown in SI eq 57.
The system can be tuned to approach optimality near a particular Aopt

obtained by the condition =Grp rp
opt (filled circles).
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