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The molecular motor myosin V (MyoV) exhibits a wide repertoire
of pathways during the stepping process, which is intimately con-
nected to its biological function. The best understood of these is
the hand-over-hand stepping by a swinging lever arm movement
toward the plus end of actin filaments. Single-molecule experi-
ments have also shown that the motor “foot stomps,” with one
hand detaching and rebinding to the same site, and back-steps
under sufficient load. The complete taxonomy of MyoV’s load-de-
pendent stepping pathways, and the extent to which these are
constrained by motor structure and mechanochemistry, are not
understood. Using a polymer model, we develop an analytical
theory to describe the minimal physical properties that govern
motor dynamics. We solve the first-passage problem of the head
reaching the target-binding site, investigating the competing
effects of backward load, strain in the leading head biasing the
diffusion in the direction of the target, and the possibility of pref-
erential binding to the forward site due to the recovery stroke.
The theory reproduces a variety of experimental data, including
the power stroke and slow diffusive search regimes in the mean
trajectory of the detached head, and the force dependence of the
forward-to-backward step ratio, run length, and velocity. We de-
rive a stall force formula, determined by lever arm compliance and
chemical cycle rates. By exploring the MyoV design space, we pre-
dict that it is a robust motor whose dynamical behavior is not
compromised by reasonable perturbations to the reaction cycle
and changes in the architecture of the lever arm.
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Myosin V (MyoV), a cytoskeletal motor protein belonging
to the myosin superfamily (1), converts energy from ATP

hydrolysis into the transport of intracellular cargo, such as
mRNA and organelles along actin filaments (2). In its dimeric
form, the motor has two actin-binding, ATPase heads connected
to α-helical lever arm domains stiffened by attached calmodulins
or essential light chains (Fig. 1). The nucleotide-driven mecha-
nochemical cycle of the heads produces two changes in the lever
arm orientation: a power stroke, where an actin-bound head
swings the lever arm forward toward the plus (barbed) end of the
filament, and a recovery stroke, which returns the arm to its
original configuration when the head is detached from actin (3).
The motor translates these changes into processive plus end-di-
rected movement (4–6). By alternating head detachment, MyoV
walks hand-over-hand (7, 8), taking one step of ≈36 nm for each
ATP consumed (9). At small loads, the motor can complete
≈20− 60 forward steps before dissociating from actin (6, 10, 11).
Such a high unidirectional processivity requires coordination
in the detachment of the two heads, a “gating” mechanism,
which is believed to arise from the strain within the molecule
when both heads are bound to actin (12–15). Sufficiently large
opposing loads can counteract the plus end-directed bias,
resulting in an increase in the probability of back-stepping
(16) until the motor velocity goes to zero at a stall force of
≈1:9− 3 pN (4, 12, 16–19). Although MyoV is among the most
extensively studied motor proteins, improvements in experi-
mental resolution continue to provide new and surprising
insights into the details of its dynamics. A beautiful recent
example is the high-speed atomic force microscopy (AFM) of
Kodera et al. (20), which was used to visualize not only the

expected hand-over-hand stepping but additional, less well-
understood processes like “foot stomping” (21, 22), where one
head detaches and rebinds to the same site. Thus, a compre-
hensive picture of MyoV motility needs to account for all the
kinetic pathways, including back-stepping and foot stomping,
how they vary under load, and their relationship to the
structural and chemical parameters of the motor.
To address these issues, we introduce a minimal model of

MyoV dynamics, focusing on the stochastic fluctuations of the
motor head during the diffusive search of the detached head for
a binding site, whose importance has been illuminated by various
experiments (22–25). The large persistence length lp of the lever
arms (26–28) allows us to propose a coarse-grained polymer model
for the reaction-diffusion problem, which, in turn, yields approxi-
mate analytical expressions for all the physical observables,
including binding times, run length, velocity, and stall force.
We have built on the insights of earlier theoretical works (28–
34), which focused on modeling a reaction network of discrete
states in the mechanochemical cycle of the motor heads. Our
work supplements the reaction network with an explicit treat-
ment of the diffusive search, which has been studied using in-
sightful Brownian dynamics simulations of forward stepping in
MyoV (35). An important aspect of our theory is that it allows us
to tackle not just forward steps but the full complexity of foot
stomping and back-stepping across the entire force spectrum up
to the stall point. In our framework, the load dependence of the
MyoV behavior enters naturally, because pulling on the molecule
shifts the speed and likelihood of the detached head reaching the
forward or backward binding site. The competition between the
time scales of first passage to the sites, and how they compare
with the detachment rates of the heads, determines the parti-
tioning of the kinetic pathways. Significantly, polymer theory
gives us a direct connection between the kinetics and the struc-
tural features of the motor, like the bending elasticity of the lever
arms and the orientational bias due to the power stroke. The
result is a theory with only three fitting parameters that have not
been previously determined through experiment, all of which
have simple physical interpretations. The theoretical fit quanti-
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tatively reproduces a variety of experimental data, like the time-
dependent mean trajectories of the detached head (23) and the
force dependence of the backward-to-forward step ratio (16) and
run length/velocity (4, 16–18, 36). We also explore more broadly
the design space of MyoV structural parameters, allowing us to
predict the essential requirements for the observed dynamical
behavior and to answer the following questions. Is the structure
of the motor dictated by certain natural constraints? How robust
is the motility of MyoV to perturbations in the parameters?
What are the relative contributions of head chemistry (resulting
from changes in the nucleotide states) and the structural features
to the measured stall force? The answers to these questions,
which are provided in terms of phase diagrams, lead to testable
predictions.

Results
Polymer Model for MyoV. In our model for MyoV (Fig. 1B), the
motor and lever arm domains of each head are represented as
a single semiflexible polymer chain with contour length L and
persistence length lp. The two polymer legs are connected at
a freely rotating joint. The parameter values characterizing our
model are listed in Table 1. Although the tail domain of MyoV,
attached to the cargo, is not explicitly included, its effect is to
transmit a load force F to the joint. The force is oriented in the
x̂− ẑ plane, at an angle θF , measured clockwise from − ẑ. The
axis ẑ runs parallel to the actin filament, pointing toward the plus
end. Our focus here is to study backward or resistive load
ð0≤ θF < 908Þ at force magnitudes smaller or close to the stall,
F.Fstall≈1:9− 3 pN (4, 12, 16–19). The polymer end points can
bind to the actin filament at discrete binding sites, which are
evenly spaced at a distance Δ ¼ 36 nm along the filament, cor-
responding approximately to the half-pitch of the actin double-
helical structure (13 G-actin subunits). Although the model can
be extended to incorporate a distribution of Δ values, reflecting
binding to subunits neighboring the primary binding sites, in the
simplest approximation, we keep Δ fixed. Because the first passage
times to the primary binding site and its neighbors are similar, the
effect of this approximation is small.
For each leg, the lever arm can adopt different preferred

configurations with respect to the motor head during the course
of the stepping cycle: the prepower-stroke (Pr) and postpower-
stroke (Po) states. When the motor head is bound to actin and
there is no tension on the end of the lever arm transmitted
through the junction, the two states have relaxed configurations,
as illustrated in Fig. 1A (Left and Middle). In the Pr state, the
lever arm relaxes to an orientation tilting toward the actin-minus
end, whereas in the Po state, it tilts toward the actin-plus end. In

our model, the tilting preference of the Po state enters as a
harmonic constraint on the end tangent of the bound leg: If û0
is the unit tangent vector at the point where the polymer leg
attaches to actin, we have a potential of Hc ¼ 1

2 kBTνcðû0−ûcÞ
2,

with a constraint strength νc and direction ûc. Here, kB is
Boltzmann’s constant, and T is temperature. The vector ûc is in
the x̂− ẑ plane at an angle 0< θc < π=2, where θc is the constraint
angle, measured counterclockwise from the þẑ axis (the ûc di-
rection is marked by a red dashed line in Fig. 1 A and B). In
principle, the Pr state is analogous but with distinct values of νc
and θc, with the latter in the range of π=2< θc < π. However, as
we will see below, all the kinetic pathways involve diffusion while
the bound leg is in the Po state, so the parameters of the Pr state
do not explicitly enter into the calculation. Hence, both νc and θc
will refer only to the Po state.
If there is tension propagated through the junction on the end

of the lever arm (i.e., due to load or to the fact that both motor
heads are bound to actin), the lever arm contour will be bent
away from its relaxed conformation. Fig. 1A (Right) shows the Po
state under backward tension on the arm: The lever arm is bent,
adopting a shape that reflects several competing physical effects.
The Po constraint of strength νc tries to keep the head–arm angle
near θc, the bending stiffness lp favors a straight lever arm con-
tour, and the tension tries to pull the end of the arm backward.

A

C D

B

Fig. 1. (A) Orientational states of the MyoV
head with respect to its lever arm. For clarity,
only one leg of the two-legged motor is shown,
although the states are the same for both legs.
(Left) Pr. (Middle) Po. For each state, the relaxed
orientation (in the absence of tension on the
lever arm end) is marked by a dashed red line.
(Right) Po state with backward tension on the
arm end, causing the lever arm to bend back-
ward away from its relaxed direction. (B) Coarse-
grained polymer representation of MyoV. (C)
Schematic view of four MyoV kinetic pathways.
For simplicity, the nucleotide-free state, following
ADP release from the TH and before ATP binding,
is not shown. (D) Probability of each kinetic
pathway as a function of backward force F (with
θF ¼ 0) calculated from the theory using the pa-
rameter set in Table 1.

Table 1. MyoV model parameters

Parameter Value Notes

Mechanical parameters
Leg contour length, L 35 nm (35)
Leg persistence length, lp 310 nm (27)
Head diffusivity, Dh 5:7× 10−7 cm2=s (40, 41)
Constraint angle, θc 60° Fit to experiment (23)
Constraint strength, νc 184 Fit to experiment (16)

Binding parameters
Binding site separation, Δ 36 nm (35)
Capture radius, a 1 nm
Binding penalty, b 0.065 Fit to experiment

(6, 10, 11)
Chemical rates

Hydrolysis rate, t−1h 750 s−1 (38)
TH detachment rate, t−1d1 12 s−1 (38)
LH detachment rate, t−1d2 1.5 s−1 (15)
Gating ratio, g ¼ td2=td1 8
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The polymer model naturally incorporates the interplay of these
effects, which we will show is crucial in determining the dy-
namical response of the motor to load.

Kinetic Pathways. The starting point for all MyoV kinetic path-
ways (Fig. 1C, Left) is the waiting state, where both heads have
ADP, are strongly bound to actin, and are in the Po state. Be-
cause the leading (L) leg is connected to the trailing (T) leg at
the junction, the L leg is under backward tension, and it bends in
the manner discussed above. The resulting strained “telemark”
or “reverse arrowhead” stance has been observed directly in both
EM (37) and AFM (20) images. The waiting state leads to four
possible kinetic pathways (Fig. 1C).
1. Forward step. ADP is released from the trailing head (TH), fol-
lowed by ATP binding, which makes association of the head with
actin weak, leading to detachment. We assume saturating ATP
concentrations ð> 100  μMÞ, where ATP binding and subsequent
TH detachment are very fast compared with ADP release; hence,
the entire detachment process for the TH is modeled with a single
rate of t−1d1 ¼ 12 s−1, equal to the experimentally measured ADP
release rate (38). If we set the origin ðz ¼ 0Þ at the position of the
bound leading head (LH), the free end of MyoV can diffuse and
potentially rebind at one of two sites, r± ¼ ±Δẑ along the actin
filament (Fig. 1B). Binding at rþ leads to a forward step (Fig. 1C,
row 1). However, successful binding is dependent on two con-
ditions: (i) reaching the capture radius a around the binding site
and (ii) the motor head having already hydrolyzed its bound ATP.
During the diffusive search, the entire two-legged polymer

structure fluctuates in three dimensions, subject only to the end-
tangent constraint at the bound leg attachment point. First pas-
sage to a given binding site r± , which occurs at a mean time in-
terval t±fp after detachment, is the first arrival of the detached head
to any point within a radius a of the binding site. The capture
radius a, which reflects the distance at which the free MyoV head
can appreciably interact with the actin-binding site (35), is set
to a ¼ 1 nm, comparable to the Debye screening length λD in
physiological and in vitro conditions (i.e., for KCl concentrations
of 25− 400 mM, λD≈1:9− 0:5 nm).
The second condition for successful binding is the chemical state

of the detached head. In order for the head to strongly associate
and bind to actin, ATP must hydrolyze to ADP + inorganic
phosphate (Pi), which occurs at a hydrolysis rate of t−1h ¼ 750 s−1
(38). Along with hydrolysis, the detached head also undergoes
a recovery stroke, which reverses the power stroke, changing the
orientation of the head with respect to the lever arm (Po→Pr).
For simplicity, we combine the nucleotide/head–arm orientation
states of the detached head into two possibilities: ATP/Po (A)
and ADP + Pi/Pr (B). Unless otherwise specified, we assume the
transition A→B occurs irreversibly at a rate of t−1h . (We will
discuss one experimental variant of MyoV with modified light
chain composition in the section on zero load binding kinetics,
where there is a nonnegligible reverse hydrolysis rate of t−1−h).
Binding can only occur in state B, so if the detached TH has
reached the capture radius of one of the sites and the system is
still in state A, it has a zero probability of binding, resulting in the
TH continuing its diffusive trajectory. For forward stepping to
occur, the TH must reach the capture radius of rþ in state B, and
then it can bind with a probability of 1.
After successful binding, Pi is rapidly released from the bound

head, which then results in a Pr→Po transition, returning the
motor to its waiting state, with both the heads being in the Po
state. Release of Pi and the power stroke is much faster than the
detachment time scale td1 (13), so we can assume that the motor
with two bound heads spends nearly all its time waiting in the
telemark stance.
2. T foot stomp. This kinetic pathway (Fig. 1C, row 2) is similar to
the forward step, except that the detached TH diffuses to the site
r− rather than rþ. Rebinding at r− brings the center of mass of
the motor back to its original location, without any net move-
ment along the actin. For the binding to be successful, the head
must be in state B within the capture radius a of r−, in which case

it will bind with a probability of b< 1. The reduced probability of
binding is a crucial difference between the forward step and T
foot stomp pathways. The binding penalty b arises because the
head in state B, after the recovery stroke, is in the Pr orientation,
which is believed to favor binding to the forward target site ðrþÞ
over the backward site ðr−Þ (3). Forward binding involves the
detached head going in front of its lever arm, which has to tilt
back toward the actin-minus end (the relaxed configuration of
the Pr state). Backward binding has the opposite arrangement,
with the lever arm bent toward the actin-plus end, which is an
unnatural configuration in the Pr state, resulting in a strained
back leg, as illustrated in Fig. 1C (Right), row 2. We model this
effective extra energy barrier in the binding process through the
probability b. The greater the barrier, the smaller is the value
of b. The hypothesis that the recovery stroke is important in
favoring forward binding has found support in a recent single-
molecule study on single-headed MyoV (3), which established
that the Pr orientation is highly kinetically and energetically sta-
ble (with an energy barrier of at least 5 kBT with respect to Po).
3. L foot stomp. In addition to the two kinetic pathways above,
initiated by TH detachment, there are two other possibilities that
occur upon detachment of the LH. The first of these is the L foot
stomp, where the LH unbinds and then rebinds to its original site
(Fig. 1C, row 3). The detachment of the LH occurs at a slower
rate than TH detachment, t−1d2 ¼ ðgtd1Þ−1, where we denote the
factor g> 1 as the gating ratio. This asymmetry arises from the
intramolecular strain within the two-legged MyoV structure
bound to actin (12–15). The backward tension on the L lever arm
in the waiting state slows down ADP release in the LH by 50- to
70-fold compared with the TH (13, 20), which makes detachment
through the ADP-release/ATP-binding mechanism very rare.
Rather, the LH under backward strain detaches primarily by
means of an alternate pathway, where it retains ADP (15, 20),
an assumption supported by the observation that single-headed
MyoV under backward loads of ∼ 2 pN unbinds from actin at a slow
rate of 1.5 s−1 independent of both ATP and ADP concentrations
(15). As described below, the magnitude of the backward tension
in the waiting state can also be directly estimated from the
structural parameters of the polymer model, giving a value of
2.7 pN, sufficient to be in the slow unbinding regime. Based on
these considerations, we set t−1d2 ¼ 1:5 s−1 in our model, giving a
gating ratio of g ¼ 8. In other words, the TH is eightfold more
likely to detach than the LH per unit time. We also assume the
LH always retains ADP upon detachment [staying in the Po
state (20)], and thus no ATP hydrolysis needs to occur before
rebinding.
If we assign z ¼ 0 to be the position of the bound TH, then the

L foot stomp involves reattachment to its original site rþ. Be-
cause the LH is Po, rebinding requires the lever arm to be bent
backward, contrary to the plus-directed relaxed orientation of
the Po state. We thus have a binding penalty analogous to the
one for the T foot stomp: Successful binding will occur with a
probability b within the capture radius a around rþ. There is no
additional chemical requirement, because the LH is in an ADP
state with high affinity to actin. Although it is possible to assign a
distinct binding penalty b for the T and L foot stomps, this does not
lead to any major qualitative differences in the analysis below, so
we assume, for simplicity, a single value of b. After binding, MyoV
returns to the waiting state.
4. Backward step. The final kinetic pathway proceeds analogously to
the L foot stomp, but the detached LH diffuses and binds to the
backward site r− (Fig. 1C, row 4). MyoV thus steps backward,
shifting the center of mass toward the minus-end of actin. The
detached head retains ADP and stays in the Po state. Because
a forward-tilted lever arm is the relaxed conformation in the Po
state, there is no binding penalty. Therefore, upon reaching the
capture radius a around r−, the leg binds with a probability of 1,
andMyoV returns to the waiting state. The fact that back-stepping
in our model does not require ATP hydrolysis is consistent with
observations of ATP-independent processive backward stepping
in the superstall regime ðF > 3 pNÞ (18). For simplicity, we will not

Hinczewski et al. PNAS | Published online October 7, 2013 | E4061

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

PH
YS

IC
S

PN
A
S
PL

U
S



consider the superstall case in the present study. In principle, our
model could be generalized to the superstall regime by including
additional kinetic pathways that occur under extremely large back-
ward loads, for example, power stroke reversal (39).
In all four kinetic pathways described above, only one leg is

always bound to the actin during the diffusion step. If the bound
leg detaches before the free leg binds, the processive run ofMyoV
is terminated. We assume a bound leg detachment rate of t−1d1
during this process. This completes the description of the model,
where each MyoV waiting state ends in five possible outcomes:
forward stepping, T/L foot stomps, backward stepping, or de-
tachment of both heads from actin. The first four pathways bring
the system back to the waiting state, where the entire mechano-
chemical cycle can be repeated, whereas the last ends the run. The
only parameters for which we do not have direct experimental
estimates are the strength and direction of the power stroke
constraint, νc and θc, respectively, and the binding penalty b. We
will be able to fit these parameters by comparing the theoretical
results with experimental data, as described below, resulting in
the values listed in Table 1. Imaging studies (20, 37) suggest that
the preferred Po orientation θc is likely to be in the vicinity of 60°,
so this parameter could have been constrained from the outset.
However, we have allowed it to be a free parameter because the
angle θc that appears in the potential function Hc can, in princi-
ple, be slightly different from the observed orientation of the
bound leg in any particular image, which is affected by both
thermal fluctuations and any tension that is applied to the end of
the bound leg. For the persistence length lp, there are estimates
ranging from lp ≈100 nm (26) up to lp ≈ 375 nm (28). We use the
value lp ¼ 310 nm, based on the measurements of Moore et al.
(27). From the point of view of the polymer model, the most
important characteristic of the persistence length is that lp � L,
so the legs behave almost as rigid rods. However, one of the major
outcomes of our theory is that precise tuning of the parameters is
not required to get efficient processive dynamics qualitatively
similar to those seen in nature.

Analytical Theory for Diffusive Search Times. The central physical
quantity in our model is the first passage time to the binding site,
t±fp , which depends sensitively on the interplay of bending stiff-
ness (lp), load force ðF; θFÞ, and power stroke constraint ðνc; θcÞ
(Fig. 1B). The magnitude of t±fp at a given F compared with the
t−1h and detachment rate, along with the size of the binding
penalty, determines exactly how the system partitions among
the various kinetic pathways.
Remarkably, the polymer model allows us to derive an ap-

proximate analytical expression for t±fp by exploiting the separa-
tion in time scales between polymer relaxation and the diffusive
search (details are provided in Materials and Methods and SI
Text). If tr is the relaxation time for the two-legged polymer
structure to equilibrate after one of the legs detaches, then
tr � t±fp . Theory and simulations show that tr≈ 5 μs for nearly
rigid legs at zero load and that it becomes even smaller as F
increases (Fig. 2). The value of tr is two orders of magnitude
smaller than the fastest times for first passage to the binding
sites, t±fp ∼Oð0:1 msÞ. Because t±fp =tr � 1, we can relate t±fp to the
distribution PðrÞ, the probability density of finding the MyoV
free end at position r once the system has reached equilibrium
after leg detachment:

t±fp≈
1

4πDhaPðr± Þ
; [1]

where Dh ¼ 5:7× 10−7 cm2=s is the diffusion constant of the
MyoV head, estimated using the program HYDROPRO (40)
applied to the Protein Data Bank structure 1W8J (41). Eq. 1
transforms the dynamical problem of diffusive search time into
one of calculating the equilibrium end-point distribution of
a tethered, two-legged, semiflexible polymer structure. By adapt-
ing a mean field theory for individual semiflexible chains (42)

and noting that contour fluctuations are small in the regime
lp � L, we obtained an approximate but accurate analytical ex-
pression for Pðr± Þ, taking into account both the load force on
the joint and the end-tangent constraint (Materials and Methods
and SI Text). Together with Eq. 1, we have a complete descrip-
tion of t±fp as a function of load and the MyoV structural param-
eters. If we assume that the other events in the mechanochemical
cycle, hydrolysis and TH/LH detachment, are Poisson processes
with respective rates of t−1h , t−1d1 , and t−1d2 , the probability of each
kinetic pathway can also be derived, together with related quan-
tities like mean run length and velocity. The full set of analytical
equations for our model is summarized in SI Text.

Role of Diffusion in the Kinetic Pathway Probabilities at Zero Load.
To gain an understanding of how the structural features of
MyoV influence its motility, it is instructive to start with F ¼ 0.
Fig. 2 A (Upper) and B (Upper) shows the first passage times
t±fp as a function of lp and νc, respectively, with the other
parameters being fixed at their Table 1 values. Because of the
power stroke constraint, there is asymmetry in the first pas-
sage times: tþfp < t−fp because the center of the PðrÞ distribution
is shifted toward the forward binding site at z ¼ þΔ. At F ¼ 0,
the average z-axis location of the free leg, μz ¼

R
drðẑ · rÞPðrÞ,

is given by

μz ¼ lpð1− e−κÞ
�
coth νc − ν−1c

�
cos θc; [2]

where κ≡L=lp and the origin z ¼ 0 is at the binding site of the
attached leg. With increasing lp and νc, the position μz increases
until it saturates at the limit of a rigid rod of length L with
a fixed angle θc, μz →L cos θc. In this limit, t−fp→∞, because it
is geometrically impossible to reach the backward binding site
z ¼ −Δ. In the opposite limit of small lp and νc, the structure
has greater flexibility, reaching the backward binding site is

A B C

Fig. 2. (Upper) Theoretical predictions for the mean first passage time t ±fp to
the forward (+) and backward (−) sites; the mean binding times tLb and tTb for
the L and T legs, respectively; and the polymer relaxation time tr for theMyoV
structure to equilibrate after the detachment of one leg. All results except
tr are derived from the analytical theory. The relaxation times are estimated
using coarse-grained Brownian dynamics simulations (details are provided in
SI Text). (Right) Main time scales in the problem are summarized, with their
values (or ranges) indicated for comparison. (Lower) Ratio of backward to
forward steps, Pb=Pf. For the three columns, the quantities are plotted as one
parameter is varied, whereas all others are fixed at their Table 1 values: leg
persistence length lp (A), power stroke constraint strength νc (B), and load force
F (with θF ¼ 0) (C).
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easier, and the asymmetry is smaller. For νc � 1 and κ � 1,
the asymmetry parameter, α ¼ tþfp=t

−
fp, has a simple relationship

to the structural parameters:

α ¼
tþfp
t−fp

≈ exp
�
−
ΔT
L

cos θc þ βΔF cos θF

�
;

T ≡ 1þ 20νc
20þ 7κνc

;

[3]

where β ¼ 1=kBT and Δ≈36 nm is the step size. At F ¼ 0, the
key role in determining the degree of asymmetry is the factor T ,
which depends on lp and νc and is a dimensionless measure of the
effectiveness of the power stroke constraint. A larger T means
a smaller α and greater asymmetry. The form of T shows that the
constraint strength νc by itself is insufficient to guarantee a large
T , because it can be counterbalanced by a small lp. In other
words, the end-tangent constraint does not have a significant
effect if the polymer leg is too flexible. Thus, both νc and lp have
to be large to create significant asymmetry. In Discussion, we will
highlight the relationship between T and important mechanical
and energy scales in the system, including the overall compliance
of the leg and the energy expended by the power stroke.
The asymmetry factor α influences kinetic pathway probabili-

ties. At the end of each waiting stage, there is a probability of
making a forward step ðPfÞ, a backward step ðPbÞ, an L foot
stomp ðPLsÞ, and a T foot stomp ðPTsÞ. We plot these proba-
bilities in Fig. 1D for a range of F. When the time scale of leg
detachment is much larger than the binding times, the ratios of
the pathway probabilities can be expressed in terms of α as

Pb

Pf
¼ αð1þ bαÞ

gðbþ αÞ ;
PLs

Pf
¼ bð1þ bαÞ

gðbþ αÞ ;
PTs

Pf
¼ bα: [4]

Note that Pb=Pf and PLs=Pf are inversely proportional to g, the
ratio of TH to LH detachment, which is expected because back-
ward steps and L foot stomps can only occur when the LH
detaches. The binding penalty b enters into all the ratios because
it influences the likelihood of T/L foot stomping, which competes
with the backward/forward stepping pathways. Fig. 2 A (Lower)
and B (Lower) shows the variation of Pb=Pf at F ¼ 0 as lp and
νc are varied. We find that Pb=Pf decreases as either variable
increases, due to a larger T in Eq. 3, resulting in a smaller α.
Experimentally, MyoV exhibits negligible back-stepping at zero
load, Pb=Pf . 1% (16). To achieve this extreme unidirectional-
ity, T (or, equivalently, both νc and lp) should be sufficiently large,
an issue we will return to in Discussion when we examine the
global constraints on the structural features of the motor. Along
with back steps, T foot stomps are also negligible at F ¼ 0 for
small α, because PTs=Pf ∝ α. Because α→ 0, the only ratio that
has a nonzero limit is PLs=Pf → g−1. Qualitatively similar behavior
was observed in the high-speed AFM experiments (20), where the
TH rarely detached without resulting in a forward step. On the
other hand, essentially every time the LH detaches, it will rebind
to its original location (L stomp) because the power stroke con-
straint prevents it from reaching the backward site. For example,
in the F ¼ 0 slice of Fig. 1D, Pf≈ g=ð1þ gÞ ¼ 0:89 and PLs≈1=
ð1þ gÞ ¼ 0:11. The other pathways do not contribute significantly.

Binding Dynamics and the Average Step Trajectory at Zero Load. The
mean times tTb and tLb for the TH and LH to bind after de-
tachment (irrespective of the binding site) are related to t±fp as

tTb ¼ th þ
tþfp

1þ bα
; tLb ¼

tþfp
bþ α

: [5]

These binding times are plotted in Fig. 2 A (Upper) and B (Up-
per) as a function of lp and νc. The detached TH has to undergo

hydrolysis before rebinding, so tTb > th. For the parameters in
Table 1, tþfp ¼ 0:3 ms and th ¼ 1:3 ms at F ¼ 0, so hydrolysis is
the rate-limiting step for TH binding. As noted above, T foot
stomping is infrequent in this case, so the binding events con-
tributing to tTb are almost exclusively forward steps. We note, en
passant, that our value for tþfp agrees well with the F ¼ 0 result of
Brownian dynamics simulations (35), further validating the ana-
lytical model for the diffusive search.
A closely related quantity to the mean binding time is the

cumulative probability that the head has bound to a particular
binding site at time t after detachment. For the TH, the proba-
bility P ±

TbðtÞ for the site r± is given by

Pþ
TbðtÞ ¼

th
�
1− e−t=th

�
− tþfpð1þ bαÞ−1

�
1− e−t=t

þ
fp

�
thð1þ bαÞ− tþfp

;

P−
TbðtÞ ¼ bαPþ

Tb:

[6]

FromP ±
TbðtÞ, we can calculate an experimentally measurable quan-

tity, the average distance traveled by the free end along the z axis
after detachment, hδzðtÞi ¼ hzðtÞ− zð0Þi, where zð0Þ ¼ −Δ. The
result is

hδzðtÞi ¼ ðμz þ ΔÞ
�
1−Pþ

TbðtÞ−P−
TbðtÞ

��
1− e−t=tr

�
þ 2ΔPþ

TbðtÞ:

[7]

The first term represents the contribution from the ensemble
of trajectories where the TH is still unbound: a fast polymer
relaxation over time tr from the initial point at zð0Þ ¼ −Δ to the
equilibrium average position μz (Eq. 2). The second term repre-
sents the fraction of the ensemble where the TH has successfully
bound to the forward site, which eventually corresponds to the
entire ensemble for sufficiently large t. Thus, δzðtÞ has two regimes,
as shown in Fig. 3: a steep rise to μz þ Δ on time scales t. tr,

Fig. 3. Mean step trajectory hδzðtÞi of the detached head along the actin
filament at zero load. Red dots are the experimental results of Dunn and
Spudich (23), obtained by tracking a gold nanoparticle attached near the
end of the MyoV lever arm. A fast rise occurs over a distance μz þ Δ, resulting
from the polymer structure relaxing to equilibrium after TH detachment.
The more gradual rise that follows corresponds to the diffusive search for
the forward binding site. The solid curve is the theoretical prediction, cor-
rected for the slowing down of relaxation and first passage dynamics due to
the particle. (Inset) Result of the original theory without the correction (solid
curve), compared with a variant of the theory where ATP hydrolysis (hyd.) is
removed as a condition for the TH to bind (dashed curve).
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followed by a slower ascent to the full step distance 2Δ. Dunn
and Spudich (23) have measured hδzðtÞi for MyoV by attaching a
40-nm diameter gold nanoparticle near the end of one lever arm.
Observing the particle through dark-field imaging, they aligned
and averaged 231 individual step trajectories to produce the
hδzðtÞi data points shown in Fig. 3. Because the nanoparticle is
sufficiently large that its hydrodynamic drag will slow down the
relaxation and diffusive dynamics, we included a time rescaling
factor B into the theory to account for the effect of the bead:
tþfp→Btþfp, tr→Btr. The theory agrees well with the experiment for
B ¼ 29 and θc ¼ 608. The fitted value of θc is based on setting the
experimentally measured steep rise, ≈52 nm, equal to μz þ Δ,
with μz given by Eq. 2. The θc value is insensitive to the precise
value of νc or lp (assuming we are in the νc � 1 and κ � 1 re-
gime), as well as to the time rescaling B. In the experiment, the
relaxation time for the steep rise was faster than the equipment
time resolution of 320 ms. In our theory, the rescaled relaxation
time is Btr ≈ 145 ms, which satisfies this upper bound. After the
steep rise, the remaining ascent of ≈20 nm to the full step dis-
tance is determined by the diffusive search and binding to the
forward site. According to Eqs. 6 and 7, this part of the step
involves two time scales, th and tþfp. Although tþfp≈ 0:33 ms is
smaller than th ¼ 1:3 ms, the rescaled Btþfp ¼ 9:7 ms> th; thus,
in this particular case, hydrolysis is not rate-limiting.
However, by changing the ATPase properties of the motor

head, one can experimentally observe the role of hydrolysis in
the binding kinetics. The nanoparticle tracking results described
above are for MyoV with essential light chain LC1sa at the lever
arm binding site closest to the motor head and calmodulin along
the remainder of the arm. We will denote this type as MyoVelc.
Dunn and Spudich (23) also studied a variant with only cal-
modulin (MyoVcam) that has very different ATPase rates. As
shown in an earlier bulk study (43), for MyoVelc, the reverse t−1−h
is negligible compared with the forward rate (t−1h ¼ 750 s−1 from
Table 1) with th=t−h < 0:1. In contrast, for MyoVcam, the forward
rate is more than fourfold slower, t−1h ¼ 162 s−1, and the reverse
rate is substantial, t−1−h ¼ 216 s−1 (43). With nonnegligible t−1−h
and the bead rescaling factor B, Eq. 5. for the TH binding time
becomes

tTb ¼ th þ
Btþfp

1þ bα

�
1þ th

t−h

�
: [8]

By substituting the t−1h and t−1−h estimates for MyoVcam from ref.
43, while keeping all other parameters the same, Eq. 8. predicts
a MyoVcam binding rate of t−1Tb ¼ 35 s−1, which is about 2.6-fold
slower than for MyoVelc, where t−1Tb ¼ 91 s−1. Dunn and Spudich
estimated the rebinding rates from the nanoparticle trajectories
and found a similar threefold decrease between the MyoVelc
and MyoVcam systems, from 180± 50 s−1 down to 60± 15 s−1
(23). The experimental rebinding rates are faster than the theo-
retical ones, which may be due, in part, to the fact that, experi-
mentally, rebinding is not directly observed but only approximately
inferred from where the δzðtÞ trajectory covers the full distance 2Δ
to the forward site. The myosin head could still diffuse near 2Δ for
some time without binding, and this could be indistinguishable
from a binding event due to the intrinsic noise in the trajectory.
However, the general slowdown seen in the experiment is repro-
duced in the theory and highlights the interplay of hydrolysis and
diffusion times in the binding dynamics.
The hydrolysis rate would also play a greater role if the

impediment of the attached bead were removed. For the
MyoVelc case, with a bead factor B ¼ 29, the free end has
enough time to hydrolyze before finding the forward binding
site. Thus, the decay after the steep rise is mainly a single
exponential in Fig. 3, with a characteristic time Btþfp. If a future
experiment were to measure hδzðtÞi without slowing down the

diffusion, we should see the average step shape shown in Fig.
3 (Inset), predicted by the theory for B ¼ 1. There is a more
gradual, double-exponential decay after the steep rise,
reflecting both the th and tþfp time scales. For comparison, we
also show the results of the theory without ATP hydrolysis as
a precondition for binding so as to emphasize the change in
the hδzðtÞi shape due to th.
Experimentally, one can also study the average z-axis trajec-

tory of the center of mass, for example, in a single-molecule
bead assay (19). The results are essentially similar, but the
above-cited distances are halved: We have a fast rise of ≈26 nm
corresponding to the power stroke, detachment, and polymer
relaxation, and a remaining slow ascent of ≈10 nm due to dif-
fusive search and binding, giving a combined 36-nm center-of-
mass step.

Run Length at Zero Load. The final observable quantity of interest
at F ¼ 0 is the mean run length along the actin filament. As-
suming td1 � tLb; tTb, the average run length zrun at any F is
given by

zrun ¼ vruntrun;     vrun ≈
Δ
td1

�
1

1þ bα
−

α

gðbþ αÞ

�
;

trun ≈
gt2d1

tLb þ gtTb
;

[9]

where vrun and trun are the mean run velocity and duration, respec-
tively. The positive and negative terms in vrun are contributions
from forward and backward stepping, respectively. Experimental
estimates for zrun at F ¼ 0, plotted on the left edge of Fig. 4B, vary
over a wide range from 0:7− 2:4 μm (6, 10, 11), most likely due
to different measurement conditions (particularly the KCl con-
centration of the buffer). We choose as a representative value
zrun ¼ 1:3 μm, which allows us to use Eq. 9 at F ¼ 0 to solve for
the binding penalty parameter, b ¼ 0:065. This can be done be-
cause α � 1 at zero load, and substituting α ¼ 0 in Eq. 9 leads
to an expression that is roughly independent of νc for large νc.
Thus, we have fit two of the free parameters, θc and b, by com-
parison with experimental values for the rise μz þ Δ and the run
length zrun, respectively. The final free parameter, νc, will be fit
by comparison with the stall force, which is discussed in the
next section.

Load Dependence of the Kinetic Pathways and a Simple Formula for
Stall Force. When a backward force is applied to MyoV, it coun-
teracts the bias due to the power stroke constraint, bending the
bound leg and shifting the equilibrium away from the forward
binding site. We see this directly in Eq. 3 for α, where the
βΔF cos θF term in the exponential has the opposite sign of the
−ΔT L−1 cos θc contribution from the constraint. Thus, α increa-
ses rapidly with increasing F, eventually becoming greater than 1,
meaning that reaching the backward site is faster than reaching
the forward one. Fig. 2C plots t±fp and the leg binding times as
a function of F for the parameter set in Table 1. The changeover
from α< 1 to α> 1 occurs near F ¼ 1:4 pN. The corresponding
pathway probabilities are in Fig. 1D. With increasing force, each
leg changes its primary kinetic pathway. TH detachment, which
almost always leads to forward stepping at small F, instead leads
to T foot stomping at high F. Similarly, LH detachment results in
mainly L foot stomps at low F but leads to backward stepping at
high F. Thus, application of a resistive load totally alters the
partitioning between the kinetic pathways.
At the stall force, Fstall, the probabilities of backward and

forward stepping are equal, and the mean MyoV velocity goes to
zero. Setting Pb=Pf from Eq. 4 equal to 1, substituting α from
Eq. 3, we obtain
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Fstall ¼
T cos θc
βL cos θF

þ 1
βΔ cos θF

log
g− 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg− 1Þ2 þ 4gb2

q
2b

≡Fp
stall þ Fc

stall;

[10]

where the power stroke effectiveness T is defined in Eq. 3 in
terms of lp, L, and νc. The stall force has two main contributions.
The first term Fp

stall is due to the power stroke constraint, depend-
ing on T and θc, and thus the structural parameters that deter-
mine T . Larger T and smaller θc both act to shift the free end
probability distribution closer to the forward site, impeding
back-stepping and contributing to a larger Fstall. The second
term Fc

stall arises from two properties of MyoV head chemis-
try: the gating ratio g that controls how often the TH detaches
relative to the LH and the binding penalty due to incorrect head

orientation near the binding site. Increasing g makes detachment of
the LH less common. Because back-stepping requires LH de-
tachment, it will also become less probable. The importance of
b is related to the Pr orientation penalty, which makes binding
to the backward site less favorable. Larger g or smaller b reduces
Pb=Pf at any given F, thus increasing Fstall. If there were no
gating asymmetry (the ratio g ¼ 1), then the contribution
Fc
stall vanishes.
The optical trap experiment of Kad et al. (16) yielded Pb=Pf

as a function of F. The data are plotted in Fig. 4A, corresponding
to an estimated Fstall≈1:9 pN. Using this experimental value of
Fstall and assuming, for simplicity, that θF ¼ 0 or a pure backward
load, we get νc ¼ 184 by solving Eq. 10. In Discussion, we will
return to the magnitude of νc in the broader context of stiffness
and energetics within the myosin motor family. The theoretical
curve in Fig. 4A is in good agreement with the experimental data
points over the entire measured F range. Back-stepping is mostly
suppressed for F. 1 pN, and then rapidly increases until the
stall point.

Run Length and Velocity Under Load. The change in kinetic pathways
with F manifests itself in two other observables, the mean run
length zrun and velocity vrun, which both decrease to zero as the stall
force is approached. In Fig. 4 B and C, we show various experi-
mental results for these two quantities as a function of F, together
with the theoretical prediction (Eq. 9). Aside from one exception
mentioned below, all the experiments were done at saturating
ATP ð& 100 μMÞ. Despite the scatter in the experimental values,
the theory reproduces the overall trends well. The motor function
nears its unloaded ðF ¼ 0Þ velocity of vrun ¼ 414 nm=s ð≈Δt−1d1 Þ
for small forces and then slows down noticeably for F& 1 pN as
the proportion of back steps increases. The extrapolated force
at which the velocity goes to zero is another way to estimate the
stall force, and the experiments show MyoV stalling in the range
of F≈1:9− 3 pN.
Above the stall force, the theory predicts a small net negative

velocity, because back steps outnumber the forward steps. Although
the present theory will likely require modifications at very high
forces far into the superstall regime, we can tentatively compare
our results with those of Gebhardt et al. (18) at F ¼ 1 pN and
F ¼ 3 pN (green crosses in Fig. 4C), where the latter data point
was just above stall and exhibited a small negative velocity
≈− 90 nm=s. In this case, the ATP concentration is 1 μM, which
makes ATP binding the rate-limiting step in TH detachment. To
accommodate this, we set t−1d1 ¼ 2:2 s−1, which is the binding rate
at 1 μM ATP estimated from the experimental kinetics (18). With
this single modification, the theory gives the dashed curve in Fig.
4C, which roughly captures the velocities both below and above
stall. Taken together, the comparison between the theory and a
number of experimental results shows that our predictions agree
with measurements remarkably well.

Discussion
Constraints on MyoV Structural and Binding Parameters. MyoV
walks nearly unidirectionally at zero load and can persist against
backward loads up to the stall force. Is the system robust to var-
iations in the parameter space? To make the question concrete,
we can ask under what conditions does MyoV fulfill two
requirements for processive motion and the ability to sustain load:
(i) the backward-to-forward step ratio at zero load,Pb=Pf≤ e , and
(ii) the stall force Fstall falls in some range from Fmin

stall to Fmax
stall when

the resistive load is applied parallel to the actin axis (θF ¼ 0 in
Fig. 1B). We choose experimentally motivated values of e ¼ 0:01,
Fmin
stall ¼ 1:9 pN (16), and Fmax

stall ¼ 3:0 pN (4, 12, 17). From Eqs.
3, 4, and 10, these two conditions are satisfied within the blue-
shaded area of Fig. 5A, which plots a log b vs. T slice of the pa-
rameter space, with fixed θc, Δ, and g. Along the T axis, the region
has minimal and maximal boundaries:

A

B

C

Fig. 4. Comparison of the theory predictions (solid curves, with parameters
in Table 1) to experimental results (symbols) as a function of load force F
(with θF ¼ 0). For the legends, the first and second terms in the parentheses
correspond to experimental ATP and KCl concentrations, respectively. Where
the KCl concentration is not indicated, the value is 25 mM. (A) Ratio of
backward to forward steps, Pb=Pf, compared with the data of Kad et al.
(16). (B) Run length, zrun, compared with the data of Sakamoto et al. (6),
Baker et al. (10), Pierobon et al. (11), and Clemen et al. (36). (C) Velocity, vrun,
compared with the data of Mehta et al. (4), Kad et al. (16), Uemura et al.
(17), Gebhardt et al. (18), and Clemen et al. (36). The dashed curve corre-
sponds to a modified version of the theory, which accounts for the low ATP
concentration in the experiment of Gebhardt et al. (18) (main text).
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T min ¼
L

2Δ cos θc

 
βΔFmin

stall þ log
ð1− egÞeβΔFmin

stall − 1þ g

g
�
eðg− 1ÞeβΔFmin

stall þ1− eg
�
!
¼ 16:6;

T max ¼
L

Δ cos θc

�
βΔFmax

stall − log g
�
¼ 47:0;

[11]

where the numerical values are computed for the specific
parameters in Table 1. If T < T min or T > T max, there is no value

of b where conditions i and ii are satisfied simultaneously. A den-
sity plot of T in terms of νc and lp is shown in Fig. 5B, with the
T min ≤ T ≤ T max region shaded in green. Asymptotically, this region
is bounded by a minimum persistence length lmin

p for νc→∞ and
minimum constraint strength νmin

c for lp→∞ :

lmin
p ¼ 7L

20
ðT min − 1Þ ¼ 192  nm; νmin

c ¼ T min − 1 ¼ 15:6:

[12]

Having lp and νc above these two minima constitutes necessary
but not sufficient conditions for T to fall between T min and T max.
Physically, T represents the effectiveness of the power stroke con-
straint, which is directly related to lp and νc through Eq. 3. We thus
see that motor function with the given specifications requires
a certain minimal power stroke effectiveness, which cannot be
achieved unless both the persistence length of the lever arms and
the strength of the end-tangent constraint are large enough. If
either lp or νc is too small, back-stepping becomes more frequent
at zero load and it is easier to bend the bound leg backward,
resulting in stall being reached at smaller force magnitudes.
The bounds on T in Eq. 11 also depend on the gating ratio g and

Po orientation θc (Fig. 1B), which we illustrate in Fig. 5C by
plotting the density of lmin

p (related to T min through Eq. 12) in
terms of g and θc. By showing only the range lmin

p ¼ 100− 400 nm,
comparable with estimates of the lever arm persistence length
(26, 28), we see there are constraints on the angle θc that vary
depending on g. Angles too close to 90° give insufficient forward
bias and have to be compensated for by an unrealistically stiff
lever arm lmin

p > 400 nm. As θc decreases, lmin
p decreases, be-

cause the stronger forward bias means that one can use pro-
gressively more flexible lever arms and still get efficient motility
and resistance to load.
The parameter range where the motility conditions i and ii are

simultaneously satisfied (the shaded region in Fig. 5A), is broad,
encompassing a wide swathe of possible b values. To restrict the
parameters further, we can specify that MyoV exhibit a certain
run length. The dotted lines in Fig. 5A are loci of constant zrun,
with the red dot marking the parameter set in Table 1 (where
zrun ¼ 1:3 μm and Fstall ¼ 1:9 pN). Even with this restriction, we
still have a range of possible T values at each zrun, which corre-
sponds to a region in the space of lp and νc. Interestingly, the
system has a degree of robustness against changes in the struc-
tural parameters and can meet the basic requirements for
function with a high-duty ratio assuming lp and νc yield a T within
the allowed range.

Relative Contributions of Power Stroke and Head Chemistry to the
Stall Force Magnitude. Although the emphasis in the preceding
section has been on the structural parameters, it is important to
note the complementary role of head chemistry (determined by
the nucleotide state of MyoV) in producing the observed stall
force. If TH and LH detachment were equally probable ðg ¼ 1Þ,
the Fc

stall term in Eq. 10 would be zero, and Fstall ¼ Fp
stall. From

the definition of α in Eq. 3, one can see that Fp
stall is the force

magnitude at which α ¼ 1. In other words, at g ¼ 1, the only
condition for stall is that the first passage times to the forward
and backward sites are equal. In fact, the value of Fp

stall arises
from a simple force balance: Stall occurs when the component
F cos θF of the backward load along the z axis equals ðT =βLÞcos θc,
the z component of an effective forward force ðT =βLÞ oriented
along the power stroke constraint direction. This is another way of
interpreting the power stroke parameter T , relating it to a coun-
teracting force on the joint to oppose the load. When the two
forces are equal, there is no bias either forward or backward and
α ¼ 1.
Head chemistry changes the picture, by making LH detach-

ment less frequent ðg> 1Þ and introducing a binding penalty
ðb< 1Þ for the wrong head orientation at the binding site. A small
b parameter reduces the probability of T foot stomping, which

A

C

B

Fig. 5. Exploring the design space for MyoV satisfying the constraints that
Pb=Pf < 0:01 and that the stall force Fstall be in the range of 1:9−3 pN. The red
dot in each panel corresponds to the parameter set in Table 1. (A) Blue-shaded
region shows the allowed values for the binding penalty b and power stroke
effectiveness T (Eq. 3). The intensity of the shading indicates the fraction
Fcstall=Fstall, where Fcstall is the contribution of head chemistry to the total stall
force (Eq. 10). The labeled black dotted lines correspond to loci of constant
run length zrun. The blue-shaded region falls entirely within the range of
T min ¼ 16:6 to T max ¼ 47:0 along the T axis. (B) Green-shaded region corre-
sponds to those values of persistence length lp and power stroke strength νc
that yield T in the range of T min to T max. The intensity of shading indicates the
magnitude of T . Below the values lmin

p ¼ 192 nm and νmin
c ¼ 15:6, it is impos-

sible to satisfy the bounds on T . (C) Purple-shaded region corresponds to values
of the gating ratio g and power stroke constraint angle θc that yield lmin

p from
100− 400 nm, with the shading intensity proportional to lmin

p .
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would otherwise compete more easily with forward stepping at
large loads and reduce the likelihood of the latter. This is the
beneficial role of the recovery stroke highlighted in the study by
Shiroguchi et al. (3). The outcome is an additional contribution
Fc
stall to Fstall, which means stall is delayed until we reach a value

of α> 1. In order for back-stepping to be as likely as forward
stepping, it is not enough to make the first passage times to the
two binding sites equal. We have to make t−fp fast enough com-
pared with tþfp to compensate for the gating and binding biases.
To illustrate the significance of the Fc

stall contribution over the
allowed parameter range, we use the intensity of the shading in
Fig. 5A to represent Fc

stall=Fstall, the fraction of the stall force
magnitude due to the head chemistry term. The fraction values
vary from ≈0:08− 0:49, with the parameter set in Table 1 giving
Fc
stall=Fstall ¼ 0:28. Although the power stroke term always domi-

nates, head chemistry has a smaller but nonnegligible role in
helping MyoV move forward under load.

Relation of the Power Stroke Constraint Strength to Myosin Stiffness
and Thermodynamic Efficiency. The mechanical compliance of
MyoV under load is determined both by the bending stiffness of
the lever arm lp and the strength of the effective end-tangent
constraint νc. The latter arises at a molecular level from the
bending stiffness of the flexible joint between the motor head
and lever arm domains. If we suppose this joint involves sub-
domains (i.e., the converter region of the motor head) on length
scales of ∼ 1  nm, then νc ¼ 184 corresponds to a persistence
length of ∼ 184  nm for the head–arm joint, which is reasonable
because it is of the same order of magnitude as the persistence
length, lp ¼ 310  nm, of the lever arm itself.
The complex coupling between these two different bending

rigidities is reflected in the power stroke effectiveness parameter
T , which depends nonlinearly on both lp and νc. In fact, one can
approximately relate T to the overall compliance of the head–
arm system. For large lp, where the arms are nearly rigid rods, the
backward force ðθF ¼ 0Þ required to keep the end of the bound
leg at an angle θ′c > θc (Materials and Methods) is

F ≈
T
βL

sinðθ′c − θcÞ
sin θ′c

: [13]

The horizontal δz displacement corresponding to the angular
displacement between θ′c and θc is δz  ≈  Lðcos θc − cos θ′cÞ. For
θ′c ¼ 608− 1208, the rough angular range during the motor cycle, F
scales almost linearly with δz, with a slope k  ≈  T =βL2 that gives an
effective total spring constant of the bound leg. In the strained tele-
mark stance of the waiting state, when both legs are bound and Po,
and the L leg is bent backward from θc ¼ 608 to about θ′c ¼ 1208,
δz≈L and the effective spring is loaded with a mechanical energy of
Ewait ¼ kδz2=2 ¼ T =2β. This is essentially the energy necessary for
the power stroke (Pr to Po) transition that loads the spring. For
lp ¼ 310  nm and νc ¼ 184, we have T ¼ 23:2, k ¼ 0:078  pN=nm,
and Ewait ¼ 11:6  kBT. If the total energy available from ATP hy-
drolysis is ≈ 24  kBT, then this corresponds to a thermodynamic
efficiency of nearly 50%, similar to earlier estimates for MyoV
(30) andmyosin II (44). The tension in the waiting state associated
with this stored mechanical energy is Fwait ¼ kδz ¼ 2:7  pN.
Myosin II offers an interesting point of comparison in terms of

mechanical compliance. The stiffness k of its S1 domain is a key
parameter in the swinging cross-bridge model of muscle contrac-
tion, with a range of k≈ 1− 3  pN=nm inferred from experimental
measurements (26, 45, 46), which is an order of magnitude higher
than our MyoV value above. The key factor underlying this dif-
ference is the length of the lever arm, with myosin II having an L
about one-third that of MyoV. If one assumes that beyond this
difference, the other structural factors (lp and νc) are similar
between these two systems, then one can use our structural
model with lp ¼ 310 nm, νc ¼ 184, and L ¼ 12  nm to predict
a myosin II stiffness of k ¼ 1:5  pN=nm, which compares well
with the experimental range.

Conclusion
In conclusion, we have proposed a model of MyoV dynamics
based on the polymeric nature of the lever arms and the proba-
bility distribution of their fluctuations during the diffusive search
for actin-binding sites. Using only three experimentally unknown
parameters, our theory quantitatively captures many experimental
outcomes, such as the time dependence of the mean trajectory of
the detached head and the force dependence of the probability
ratio of forward to backward stepping. The theory, which allows us
to explore the robustness of stepping to variations in the design of
MyoV, also yields testable predictions for novel quantities, like the
probabilities of foot stomping as a function of load. Although the
unidirectionality of the motor and the stall force magnitude exhibit
tolerance to variation in the structural parameters, the theory
reveals constraints on the persistence length of the lever arms and
power stroke bias. In the context of processive motors within the
myosin superfamily, MyoV has the simplest lever arm structure,
which can be approximated well by a stiff polymer.Myosins VI and
X have evolved qualitatively different lever arms consisting of both
stiff and flexible segments (47). The underlying theoretical ideas in
our description of MyoV are quite general, and it will be in-
teresting to extend them in the future to more complex geome-
tries. How do the structural constraints change in a motor with
heterogeneous persistence length, and can such an approach help
resolve the competing hypotheses for the conformation of the
myosin VI lever arm (48–50)?
From a broader perspective, the approach we have developed

is also applicable in other motor systems, such as dynein and
kinesin, provided the structural elements generating the power
stroke can be modeled as suitable polymer chains. In addition,
there are potential applications to other biological systems that
transmit or generate force, such as microtubules and cytoskel-
etal structures.

Materials and Methods
First Passage Times to Binding Sites. The derivation of Eq. 1 for the mean first
passage times t ±fp is shown in detail in SI Text. The underlying approach is
based on the renewal method for first passage problems (51); in the polymer
context, this is equivalent to the Wilemski–Fixman theory for diffusion-
controlled reactions (52). For analytical tractability, we ignore excluded volume
interactions, which would likely lead to a small decrease in the first passage
times but would not change the overall order ofmagnitude. Strictly speaking,
t ±fp depends on the initial configuration of the polymer, but for MyoV
dynamics, t ±fp � tr, the relaxation time of the polymer to equilibrium.
Hence, the memory of the initial configuration is lost during the diffusive
search, and the expression for t ±fp in Eq. 1 is valid assuming we do not start
with the free end in the immediate vicinity of the target. When the latter
condition is violated, for example, after failed binding attempts due to
wrong head orientation or immediately following detachment from the
actin, we assume fast relaxation to equilibrium before the head has a
chance to rebind.

Mean Field Theory for Probability Distribution of MyoV Free End During
Diffusive Search. The key physical quantity in Eq. 1 that determines the av-
erage first passage time to a binding site is Pðr± Þ, the equilibrium proba-
bility density of finding the detached end of MyoV at r± ¼ ±Δẑ. For a
structure of two semiflexible polymer legs, with one leg bound at the origin,
the free end-point vector is r ¼ rf þ rb, where rf=b is the end-to-end vector of
the free/bound leg. The distribution PðrÞ is a convolution of the individual leg
distributions Pf=bðrf=bÞ:

PðrÞ ¼
Z

drb

Z
drf   PbðrbÞPf ðrf Þδðr− rb − rf Þ: [14]

There is no exact closed form expression for the end-to-end distribution of
a semiflexible polymer, although moments of the distribution can be cal-
culated analytically (53, 54). For the free leg, which is not under tension, an
earlier mean field theory (55) gives a useful approximation:

Pf ðrf Þ ¼ Af ξ
−9=2
f exp

�
−

3κ
4ξf

�
, [15]

Hinczewski et al. PNAS | Published online October 7, 2013 | E4067

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

PH
YS

IC
S

PN
A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1312393110/-/DCSupplemental/pnas.201312393SI.pdf?targetid=nameddest=STXT


where κ ¼ L=lp, ξf ¼ 1− r2f =L
2, and Af is a normalization constant:

Af ¼
9
ffiffiffi
3

p
e3κ=4κ7=2

8π3=2L3ð3κ2 þ 12κ þ 20Þ: [16]

As shown in SI Text, this mean field approach can be generalized to in-
clude the end-tangent constraint and load force in the bound leg case,
yielding

PbðrbÞ ¼ Abξ
−9=2
b exp

�
−

3κ
4ξb

þ T ′  û′c · r̂b
�
, [17]

where ξb ¼ 1− r2b=L
2, r̂b ¼ rb=rb, T ′ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT ′xÞ2 þ ðT ′zÞ2

q
, and

T ′x ¼ T sin θc þ βF   L sin θF , T ′z ¼ T cos θc − βF   L cos θF : [18]

The power stroke effectiveness parameter T is defined in Eq. 3. The direction
û′c ¼ sin θ′c x̂þ cos θ′c ẑ with an angle θ′c from the ẑ axis given by

θ′c ¼ θc þ tan−1
�

βF   L sinðθc þ θFÞ
T − βF   L cosðθc þ θFÞ

�
: [19]

In the limit of large lp, the vector û′c is approximately the average ori-
entation of the bound leg, reflecting the combined influence of the load
force F and the end-tangent constraint νc . In the case of a backward
force ðθF ¼ 0Þ, we can invert Eq. 19 to find the force F required, on av-
erage, to maintain an orientation θ′c > θc , as shown in Eq. 13. In both the
free and bound leg cases, the analytical distributions Pf=bðrf=bÞ have ex-
cellent agreement with the exactly known moments. Carrying out the
convolution in Eq. 14, we arrive at a final expression for Pðr± Þ in the stiff
regime ðlp � LÞ:

Pðr± Þ≈
ð3κð7κ þ 20Þ þ 200ÞT ′
1,600πL2 Δ sinhT ′

I0

�
T ′x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ðΔ=2LÞ2

q �
e±

T ′zΔ
2L , [20]

where I0ðxÞ is the zeroth-order modified Bessel function of the first kind.
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SI Text
In SI Text, we provide the details of the theory that nearly
quantitatively explains the complex kinetic pathways in the step-
ping dynamics of myosin V (MyoV). Because this SI Text is long,
containing technical details of the calculations, we begin with
a collection of the most important equations, which were used to
make the predictions described in the main text. The subsequent
sections describe the details leading to these equations.

1. Summary of Key Equations for MyoV Dynamics
First Passage and Binding.

t±fp =
1

4πaDhPðr± Þ
;     tTb = th +

t+fp
1+ bα

;     tLb =
t+fp

b+ α
;     α= t+fp=t

−
fp

[S9, S14, and S19]

Kinetic Pathway Probabilities.

Pf =
g

1+ g
t2d1

ð1+ bαÞðtd1 + thÞðtd1 + tTb − thÞ
;     PTs = bαPf

[S15 and S16]

PLs =
1

1+ g
btd1

ðb+ αÞðtd1 + tLbÞ
;     Pb = b−1αPLs [S20 and S21]

Average Step Shape.

P+
TbðtÞ=

th
�
1− e−t=th

�
− t+fpð1+ bαÞ−1

�
1− e−tð1+bαÞ=t

+
fp

�
thð1+ bαÞ− t+fp

;

P−
TbðtÞ= bαP+

TbðtÞ
[S22 and S23]

hδzðtÞi= ðμz +ΔÞ
�
1−P+

TbðtÞ−P−
TbðtÞ

��
1− e−t=tr

�
+ 2ΔP+

TbðtÞ

[S24]

μz = lp
�
1− e−L=lp

��
coth νc − ν−1c

�
cos θc [S25]

Mean Run Length and Velocity.

zrun = vruntrun;     vrun ≈
Δ
td1

�
1

1+ bα
−

α

gðb+ αÞ

�
;     trun ≈

gt2d1
tLb + gtTb

[S26eS28]

Equilibrium End-Point Probability Distribution.

T ≈ 1+
20νc

20+ 7κνc
;     T ′=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT ′xÞ2 + ðT ′zÞ2

q
[S41 and S44]

T ′x = T sin θc + βF   L sin θF ;     T ′z = T cos θc − βF   L cos θF [S44]

Pðr± Þ≈
ð3κð7κ+ 20Þ+ 200ÞT ′
1; 600πL2Δ sinhT ′

I0

0
@T ′x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

Δ2

4L2

s 1
Ae±

T ′zΔ
2L [S55]

Stall Force.

Fstall =
kBT
cos θF

0
@T
L
cos θc +

1
Δ
log

g− 1+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg− 1Þ2 + 4gb2

q
2b

1
A
[S59]

2. First Passage Times, Binding Probabilities, and
Experimental Observables
Mean First Passage Time to a Target Site. After the detachment of
one of the MyoV heads from the polar actin tracks, there are two
potential actin target sites where the head could rebind, at posi-
tions r± = ±Δẑ (Fig. 1B). The axis ẑ is oriented from the minus
to plus end of the actin filament, so we denote r+ and r− as the
forward and backward target sites, respectively. Before dealing
with the full complexity of the diffusive search and binding for
multiple targets (with binding probabilities dependent on the
head chemical state), we solve a simpler problem: What is the
mean first passage time for the free end of MyoV to reach a
sphere of radius a around one of the target sites, for example, r+ ?
(The derivation below will hold analogously for r−, with the +
superscripts and subscripts replaced by −.)
Let ffpðr; r′; tÞ be the distribution of first passage times for the

free end to go from an initial position r to some final position r′.
Using the renewal approach (1), the first passage time distribu-
tion can be related to the Green’s function Gðr; r′; tÞ describing
the probability of diffusing from r to r′ in time t. Choose a final
position on a sphere of radius a around the target site r+, so that
r′= r+ + aê, where ê is any unit vector. The renewal approach
relates ffp and G through the integral equation

G
�
r; r+ + aê; t

�
=
Z t

0

dt′
Z

a2dê′  ffp
�
r; r+ + aê′; t′

�

×G
�
r+ + aê′; r+ + aê; t− t′

�
:

[S1]

The physical meaning of the equation above is that the Green’s
function for going from r to a particular point r+ + aê on the
target sphere consists of paths that make first passage at some
point r+ + aê′ on the target sphere at time t′≤ t and then diffuse
from r+ + aê′ to r+ + aê in time t− t′. Because Eq. S1 is difficult
to solve analytically, we make three simplifications, motivated
by the observation that the capture radius a is small compared
with all other length scales in the problem: (i) we approximately
average over all final positions on the target sphere, replacing
r+ + aê with r+ on both sides of Eq. S1; (ii) we assume
f ðr; r+ + aê′; t′Þ does not vary appreciably with ê′ so that it can
be replaced by f+fpðr; t′Þ=4πa2, where f+fpðr; t′Þ is the first passage
time distribution for reaching any point on a target sphere of radius
a around r+, starting from r; and (iii) the Green’s function on the
right-hand side of Eq. S1 will not depend significantly on the spe-
cific unit vector ê′ defining the starting position, so we replace ê′ in
the argument of the Green’s function by a fixed unit vector ẑ. With
these approximations, Eq. S1 becomes

Gðr; r+; tÞ≈
Z t

0

dt′ f+fp
�
r; t′
�
G
�
r+ + aẑ; r+; t− t′

�
: [S2]

The above renewal equation can be solved by Laplace-transform-
ing both sides to yield
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~f+fpðr; sÞ≈
~Gðr; r+; sÞ

~G
�
r++ aẑ; r+; s

�; [S3]

where ~f+fp and ~G are Laplace-transformed functions. For exam-
ple, ~Gðr; r′; sÞ=

R∞
0 dt  e−stGðr; r′; tÞ, and a similar equation holds

for ~f+fp. The derivative of ~f with respect to s at s= 0 is related to
the mean first-passage time t+fpðrÞ to arrive at the target sphere of
radius a around r+:

−
∂
∂s
~f+fpðr; sÞ

				
s=0

=
Z∞
0

dt  t  f+fpðr; tÞ= t+fpðrÞ: [S4]

We can simplify Eq. S3 by taking advantage of time scale sep-
aration in the system. For t � tr, the relaxation time of the two-
legged polymer, the Green’s function for going from an initial to
a final position approaches the equilibrium probability distribution
of finding the free end at the final position, Gðr; r′; tÞ→Pðr′Þ as
t→∞. In Laplace space, this implies that the Green’s function can
be decomposed into two contributions:

~Gðr; r′; sÞ≈
Ztr
0

dt  e−stGðr; r′; tÞ+
�
s−1 − tr

�
Pðr′Þ

≡ ~G0ðr; r′; sÞ+
�
s−1 − tr

�
Pðr′Þ:

[S5]

For ~Gðr; r+; sÞ in the numerator of Eq. S3, we assume the initial r
is not in the immediate vicinity of the target r+ (which is gener-
ally the case for a MyoV diffusive search), so the time to reach
the target will be much larger than the relaxation time tr. Hence,
~G0ðr; r+; sÞ will be negligible, because Gðr; r+; tÞ is near zero on
the time scale t< tr. Thus, we can approximate the numerator of
Eq. S3 as

~Gðr; r+; sÞ≈
�
s−1 − tr

�
Pðr+Þ: [S6]

For the denominator of Eq. S3, ~Gðr+ + aẑ; r+; sÞ, the situation is
more complicated, because the initial and final positions are
separated by a small distance a; hence, there will be contribu-
tions to ~G0 at short times. In the limit a→ 0, the paths between
r+ + aẑ and r+ involve only a fast microscopic rearrangement of
the free end, without significant configurational changes in the
rest of the structure. If we model the free end as a particle with
diffusion constant D, the Green’s function in the short time limit
can be approximated as (1)

G
�
r++ aẑ; r+; t

�
≈ ð4πDtÞ−3=2 exp

�
−a2=ð4DtÞ

�
: [S7]

Substituting Eq. S7 into the integral for ~G0, we get an expres-
sion for the denominator:

~G
�
r++ aẑ; r+; s

�
≈

ta
4πa3

erfc
�
1
2

ffiffiffiffi
ta
tr

r �
+
�
s−1 − tr

�
Pðr+Þ

≈
ta

4πa3
+
�
s−1 − tr

�
Pðr+Þ;

[S8]

where ta = a2=D is a microscopic time scale describing how long it
takes a particle of diffusivity D to move a distance a. The second
approximation in Eq. S8 assumes ta � tr, which is justified by a sim-
ple calculation: Let us set D=Dh, where Dh = 5:7× 10−7cm2=s
is the diffusion constant of the MyoV head, as derived from
the Protein Data Bank structure 1W8J (2) using the program

HYDROPRO (3). For a= 1 nm, the resulting microscopic time
scale is ta = 18 ns, which is significantly smaller than the relaxation
time tr ∼Oð1 μsÞ of the entire structure (estimates of tr are pro-
vided in the next subsection).
Using Eqs. S6 and S8 in Eq. S3, and then evaluating the de-

rivative in Eq. S4, we obtain the final approximate expression for
the mean first passage time:

t+fp =
1

4πaDhPðr+Þ
: [S9]

We have dropped the r dependence in the notation for t+fpðrÞ,
because the first passage time result is independent of the initial
position r. This reflects the underlying assumption that the con-
figurational relaxation time tr � t+fp, so the free end loses mem-
ory of its initial position during the long diffusive search. An
analogous result holds for the mean first passage time t−fp to the
backward target site, with r+ replaced by r− in Eq. S9. A result
similar in spirit to Eq. S9 but without the benefit of derivation was
conjectured earlier (4).
To validate the approximation underlying Eq. S7, we per-

formed Brownian dynamics simulations on a bead-spring semi-
flexible polymer model of two-legged MyoV (further details are
provided in SI Text, Relaxation Times). By generating many in-
dividual trajectories of the detached polymer end point diffusing
a small distance a from r+ to some point r+ + aê, we numerically
reconstruct the corresponding Green’s function (Fig. S1). The
excellent fit of the assumed form in Eq. S7 for several values of
a to the numerical results justifies the approximation.

Relaxation Times. To estimate the relaxation time tr of the two-
legged MyoV structure, we performed Brownian dynamics (5)
simulations of a bead-spring semiflexible polymer model. Each
leg consists of 17 beads of diameter d= 2 nm, with an additional
bead at the flexible joint between the legs. The beads are con-
nected through harmonic springs of stiffness 200 kBT/nm

2, where
kB is Boltzmann’s constant, and T is temperature. Each leg
has a bending elasticity described by a persistence length
lp = 50− 400 nm. Initially, the end beads are fixed at the two
binding sites. The end tangent of the leading leg (the unit vector
oriented between the centers of the first two beads) is subject to
a harmonic constraint of strength kBTνc along ûc (at an angle of
θc = 608 from the actin filament), with νc = 50− 180. The joint
between the legs is subject to a backward load force of F. The
beads are coupled hydrodynamically through the Rotne–Prager
tensor (6), and their positions evolve in time numerically according
to the Langevin equation. Each simulation lasts 12 μs, where both
end beads are bound during the first 2.4 μs and the trailing leg end
bead is allowed to diffuse freely during the remaining time. By
averaging a large number of individual simulations (1,000–1,250
runs for each distinct parameter set of lp and νc), we can extract
the mean relaxation time tr for the z-axis position of the trailing leg
end bead to reach equilibrium after detachment.
Fig. S2 shows the resulting values of tr for νc = 50 and νc = 180,

with A plotting tr as a function of lp and B plotting tr as a function
of backward load force F at lp = 310 nm. In the absence of load,
tr ≈ 5 μs for both values of νc over the entire plotted range of lp
(corresponding to the semiflexible regime lp >L). Because re-
laxation of MyoV requires a rotational reorientation of a stiff,
two-legged structure (with each leg of contour length L= 35 nm),
we expect that tr should fall in the range between the rotational
diffusion time trodðLÞ of a rigid rod of contour length L and
trodð2LÞ, the time for a rigid rod of length 2L. Analytically, trodðLÞ
can be approximated as follows (7):

trodðLÞ=
πηL3

3 lnðL=2dÞ; [S10]
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where η is the viscosity of water. The resulting rotational dif-
fusion times trodðLÞ≈ 2:2 μs and trodð2LÞ≈ 13:3 μs are marked
as black dashed lines in Fig. S2A, which establishes that
trodðLÞ< tr < trodð2LÞ. A more precise analytical comparison can
be made with the rotational diffusion time tw of a structure con-
sisting of two rigid rods of L connected by a flexible hinge, which
has been estimated by Wegener (8):

twðLÞ≈ 1:79
πηL3

lnð2L=dÞ: [S11]

The resulting value, twðLÞ= 4:6 μs, which is marked as a red
dashed line in Fig. S2A, is in good agreement with the simulation
results. With a load force F applied to MyoV, the equilibrium
position of the end point after detachment is shifted closer to the
initial binding site. As a result, the relaxation times become
shorter, as seen in Fig. S2B. In all cases, tr is at least two orders
of magnitude smaller than the typical first passage times to the
binding site, which is consistent with the approximation used to
derive Eq. S9.

Binding Probabilities.WhenMyoV is in the waiting state, with both
heads bound to ADP and strongly associated with actin, we can
have one of two scenarios for initiating a diffusive search: (I) ADP
is released from the trailing head (TH) and quickly replaced by
ATP, leading to the dissociation of the TH from actin, in which
this detachment through ADP release/ATP binding has a overall
rate of t−1d1 , and (II) less frequently, the leading head (LH) de-
taches without ADP release, which occurs at a rate of t−1d2 � t−1d1 .
The gating parameter g= td2=td1 � 1 describes the probabilities
of the two scenarios occurring, which are gð1+gÞ−1 for I and
ð1+gÞ−1 for II.
Let us consider scenario I, which can lead either to a forward

step if the TH rebinds to r+ or to a trailing foot stomp if the TH
binds to r−. Denote the probabilities of these two binding events
as Pf and PTs. For the TH to bind to actin, three conditions must
be fulfilled:

i) The TH must hydrolyze ATP, which occurs at a hydrolysis
rate of t−1h .

ii) Subsequently, the TH must reach the capture radius a of one
of the binding sites. For r+, it reaches the capture radius with
a rate of ðt+fp Þ

−1 and then binds. For r−, it reaches the capture
radius with a rate of ðt−fpÞ

−1, but binding will only occur with
probability b, reflecting the penalty for wrong head orienta-
tion after the recovery stroke. Thus, the effective rate of
capture at the backward site is bðt−fpÞ

−1 with b � 1 (Table 1).
iii) During the entire diffusive search, the LH must not detach

from actin or the entire MyoV structure will dissociate from
the filament and the run is terminated. The detachment rate,
assumed to be ATP-independent, is given by t−1d1 .

Requirements i and ii by themselves, and the assumption that
individual events are Poisson-distributed, lead to probability dis-
tributions f ±TbðtÞ for the TH binding time to the r± target sites:

f+TbðtÞ=
Z t

0

dt′  t−1h e−t′=th
�
t+fp
�−1e−ðt−t′Þ

h�
t+fp

�−1
+b
�
t−fp

�−1i

=
e−t=th − e−tð1+bαÞ=t

+
fp

thð1+ bαÞ− t+fp
;

[S12]

f−TbðtÞ=
Z t

0

dt′  t−1h e−t′=thb
�
t−fp
�−1e−ðt−t′Þ

h�
t+fp

�−1
+b
�
t−fp

�−1i

= bαf+TbðtÞ;

[S13]

where α= t+fp=t
−
fp. The integrals in Eq. S12 are convolutions of the

probability that hydrolysis occurs at some time t′ and the prob-
ability of subsequent capture at a target site after a time interval
t− t′. The average time to bind, tTb, is the same for both sites:

tTb =

Z ∞

0
dt′  t′f+Tb

�
t′
�

Z ∞

0
dt′  f+Tb

�
t′
� =

Z ∞

0
dt′  t′f−Tb

�
t′
�

Z ∞

0
dt′  f−Tb

�
t′
� = th +

t+fp
1+ bα

: [S14]

Using Eq. S12, it is straightforward to incorporate requirement
iii and derive the probabilities Pf and PTs :

Pf =
g

1+ g

Z∞
0

dt  e−t=td1 f+TbðtÞ=
g

1+ g
t2d1

ð1+ bαÞðtd1 + thÞðtd1 + tTb − thÞ
:

[S15]

PTs =
g

1+ g

Z∞
0

dt  e−t=td1 f−TbðtÞ= bαPf : [S16]

In scenario II, ATP hydrolysis is not required for rebinding,
because the detached LH retains ADP and is in a state that can
strongly associatewith actin.Theheadorientation is now favorable
for binding to the backward site, so the binding penalty b exists for
r+ instead of r−. The free LH can bind to r+, a leading foot stomp
with probability PLs, or it can bind to r−, a backward step with
probability Pb. The LH analogs to Eqs. S12–S16 can
be obtained from these equations by the substitutions th = 0,
bðt−fpÞ

−1 → ðt−fpÞ
−1, and ðt+fp Þ

−1 → bðt+fp Þ
−1. The results are

f+LbðtÞ= b
�
t+fp
�−1e−tðb+αÞ=t+fp ; [S17]

f−LbðtÞ= b−1α f+LbðtÞ; [S18]

tLb =
t+fp

b+ α
; [S19]

PLs =
1

1+ g
btd1

ðb+ αÞðtd1 + tLbÞ
; [S20]

Pb = b−1αPLs: [S21]

The final kinetic pathway, termination by complete dissociation
from actin, occurs when the diffusive search in any of the four path-
ways above cannot be completed before the bound leg detaches.
The termination probability is Pt = 1−Pf −PTs −PLs −Pb.
From Eqs. S15, S16, S20, and S21, one can derive the pathway

probability ratios shown in Eq. 4. The results for the ratios have
been simplified under the assumption that td1 � tLb; tTb, which is
generally valid.

Average Step Shape.For comparison with the experiment of Dunn
and Spudich (9), we will consider the average step trajectory
hδzðtÞi of the TH along ẑ after detachment from actin, where
δzðtÞ≡ zðtÞ− zð0Þ and the initial position is the backward binding
site, zð0Þ= ẑ · r− = −Δ. In the ensemble of all possible trajecto-
ries at time t after detachment (with at least one head bound to
actin), there will be two subpopulations: those trajectories where
the TH is still unbound and those where the TH has bound
either to the backward site r− or to the forward site r+. In this
calculation, we ignore the small fraction of trajectories that lead
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to complete dissociation of the motor because these are not
counted as completed steps, and hence do not contribute to the
experimental measurement of hδzðtÞi. The fraction P ±

TbðtÞ of TH
trajectories that has bound to r± by time t is

P+
TbðtÞ=

Z t

0

dt′ f+Tb
�
t′
�

=
th
�
1− e−t=th

�
− t+fpð1+ bαÞ−1

�
1− e−tð1+bαÞ=t

+
fp

�
thð1+ bαÞ− t+fp

;

[S22]

P−
TbðtÞ=

Z t

0

dt′ f−Tb
�
t′
�
= bαP+

TbðtÞ; [S23]

where f ±TbðtÞ are the binding time distributions given by Eqs. S12
and S13. The expression for the average step is then

hδzðtÞi= ðμz +ΔÞ
�
1−P+

TbðtÞ−P−
TbðtÞ

��
1− e−t=tr

�
+ 2ΔP+

TbðtÞ:

[S24]

The first term in Eq. S24 reflects the relaxation of the unbound
subpopulation over a characteristic time tr to the average posi-
tion of the free end along the ẑ axis, μz = hẑ · ri, where r is the
end-to-end vector of MyoV, and the average is taken over the
equilibrium configurations of a two-legged polymer with one leg
bound to the actin filament and the other leg free. As described
in the next section, this average can be exactly derived and is
related to the structural parameters of the system: the leg con-
tour length L, the persistence length lp, the strength of the end-
tangent constraint νc at the bound end, and the angle of the
constraint direction θc relative to the ẑ axis. The full expression
for μz is

μz = lp
�
1− e−L=lp

��
coth νc − ν−1c

�
cos θc: [S25]

For those interested in the derivation, μz = μexactk cos θc, where
μexactk is given by Eq. S38 below. The value of the polymer re-
laxation time is tr ≈ 5 μs, as discussed above. The second term in
Eq. S24 is the contribution of trajectories that have bound to r+,
and hence covered a distance of δz= 2Δ along the filament axis.
Trajectories binding to the initial site r− have δz= 0, and so do
not appear in Eq. S24.

Run Length and Velocity. If the termination probability during each
diffusive search is Pt = 1−Pf −PTs −PLs −Pb, then the mean
number of searches during a run is

P∞
n=1nð1−PtÞn−1Pt = 1=Pt.

The fraction of the searches within a run that leads to forward
steps is Pf=ð1−PtÞ, and the fraction that leads to backward steps
is Pb=ð1−PtÞ. The mean run length, assuming step size Δ, is
given by

zrun =
Δ
�
Pf −Pb

�
Ptð1−PtÞ

≈
Δtd1

�
αðg− 1Þ+ b

�
g− α2

��
ðb+ αÞð1+ bαÞðtLb + gtTbÞ

; [S26]

where we have used the pathway probabilities from Eqs. S15, S16,
S20, and S21 in the limit td1 � tLb; tTb.
The mean velocity is vrun = zrun=trun, where trun is the aver-

age run time. To calculate the latter, we note that the mean
waiting period (when both heads are bound to actin) is
td1td2=ðtd1 + td2Þ= gtd1=ð1+ gÞ, whereas the mean binding times
for the TH/LH are tTb (Eq. S14) and tLb (Eq. S19), respectively.
Then, trun for td1 � tLb;   tTb is given by

trun =
Pf +PTs

Ptð1−PtÞ

�
g

1+ g
td1 + tTb

�
+

Pb +PLs

Ptð1−PtÞ

�
g

1+ g
td1 + tLb

�

≈
gt2d1

tLb + gtTb
;

[S27]

where the first term is the contribution of steps involving TH
detachment and the second term is the contribution of those in-
volving LH detachment. The resulting expression for vrun is

vrun =
zrun
trun

≈
Δ
td1

�
1

1+ bα
−

α

gðb+ αÞ

�
: [S28]

Eqs. S26–S28 are reproduced as Eq. 9.

3. Equilibrium Probability of Myosin End-Point Fluctuations
The equilibrium probability PðrÞ of finding the MyoV free end
at position r (Fig. S3), needed to calculate t+fp in Eq. S9, can be
obtained from calculating the end-to-end vector probabilities of
the bound leg, PbðrbÞ, and the free leg, Pf ðrf Þ. Because r is the
sum of the end-to-end vectors of the legs, r= rb + rf , PðrÞ can be
written as a convolution of the two leg probabilities:

PðrÞ=
Z

drb

Z
drf PbðrbÞPf

�
rf
�
δ
�
r− rb − rf

�
: [S29]

Each leg is an inextensible semiflexible polymer of contour length
L and persistence length lp (10), and one end of the bound leg is
fixed at the origin r= 0. The bound leg has two energetic con-
tributions not present for the free leg: (i) the tangent vector of
the bound leg at the origin, û0, is subject to a harmonic con-
straint with energy Hc = 1

2 kBTνcðû0 − ûcÞ2, where νc and ûc are
the strength and direction of the angle constraint, respectively
(v̂ denotes a unit vector, meaning jv̂j= 1), and (ii) a load force F
is applied at the other end of the bound leg, where it joins the
free leg. The force is oriented at an angle θF clockwise from the
−ẑ axis, as shown in Fig. S3. The axis ẑ is oriented from the minus
to plus end of the actin filament. Both of these energetic con-
tributions will lead to an overall tension in the bound leg that has
to be accounted for in calculating the probability PbðrbÞ. In the
following subsections, we present approximate analytical expres-
sions for the leg probabilities Pf ðrf Þ and PbðrbÞ, justifying them
by comparison with exact results for the first and second mo-
ments of the equilibrium probabilities. In the final subsection, we
take the individual leg results and use Eq. S29 to derive a com-
plete analytical expression for PðrÞ, which is needed to calculate
the first passage times (Eq. S9).

Equilibrium End-to-End Probability of the Free Leg.We start with the
simpler case of the free leg, which is not under tension. There is
no exact closed form analytical expression for the end-to-end
vector probability Pf ðrf Þ of a semiflexible polymer [although the
moments of the probability distribution are known analytically
(10, 11), as illustrated below]. Mean field theory, however, pro-
vides an excellent approximation of the distribution (12):

Pf
�
rf
�
=Af ξ

−9=2
f exp

 
−
3κ
4ξf

!
; [S30]

where κ=L=lp and ξf = 1− r2f =L
2, and Af is a normalization con-

stant. The end-to-end vector rf can be specified by the polar and
azimuthal angles θf and ϕf , as well as by the dimensionless radial
variable ξf , which can only take on values between 0 and 1 for an
inextensible polymer, because rf ≤L. In this coordinate system,
the normalization condition for the probability is
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1=
L3

2

Z1
0

dξf
�
1− ξf

�1=2 Zπ
0

dθf

Z2π
0

dϕf Pf
�
rf
�
: [S31]

The normalization constant Af is given by

Af =
9
ffiffiffi
3

p
e3κ=4κ7=2

8π3=2L3ð3κ2 + 12κ+ 20Þ: [S32]

In the stiff limit of large persistence length ðκ→ 0Þ, the probability
in Eq. S30 goes to a delta function at rf =L, as is appropriate for
a rigid rod ofL. In the opposite limit of flexible chains ðκ→∞Þ, the
probability goes to a Gaussian centered at r= 0. Throughout the
entire range of κ, the second moment of the probability distribution,
hr2f i= 2L2ð3κ+ 10Þ=ð3κ2 + 12κ+ 20Þ, is within 1% of the exact re-
sult hr2f iexact = 2L2κ−2ðκ− 1+ e−κÞ (10, 11). (The first moment hrf i
is trivially equal to zero in both the exact and approximate cases
because of the radial symmetry of the distribution.) The approxi-
mation of Eq. S30 thus captures the physical features of the stiff and
flexible limits and is reasonably accurate for our purposes.

Equilibrium End-to-End Probability of the Bound Leg at Zero Load.
We first consider the bound leg in the absence of load on the joint
ðF = 0Þ. Our expression for PbðrbÞ should reduce to the free leg
probability of Eq. S30 in the limit of zero constraint strength
νc = 0. For νc ≠ 0, we assume the effect of the end-tangent con-
straint can be approximated by the following ansatz:

PbðrbÞ=Abξ
−9=2
b exp

�
−
3κ
4ξb

+ T   ûc · r̂b

�
; [S33]

where ξb = 1− r2b=L
2, Ab is a normalization constant, and T is an

unknown function of νc to be determined later, satisfying T = 0
at νc = 0. Eq. S33 is identical in form to Eq. S30, except for the
additional T term in the exponential, which acts as an effective
tension along ûc due to the end-tangent constraint. The normal-
ization constant Ab is given by

Ab =Af
T

sinh T : [S34]

We choose T so that the first and second moments of the proba-
bility distribution of Eq. S33 closely agree with the exact values for
a semiflexible polymer under a harmonic end-tangent constraint.
Because the analytical expressions for these exact values are not
available in the literature, we derive them in the following way. We
start by noting that the bound leg end-to-end vector rb =

R L
0 dsûðsÞ,

where ûðsÞ= drðsÞ=ds is the tangent vector at position s along the
bound leg chain contour rðsÞ, 0≤ s≤L. The tangent vectors for an
inextensible chain all have unit length. The equilibrium statistics of
ûðsÞ for a semiflexible polymer are governed by the Green’s func-
tion Gðû; û′; s− s′Þ, which describes the probability that a chain
with tangent vector ûðsÞ= û will have tangent vector ûðs′Þ=u′ at
some position s′≥ s. This Green’s function has an exact spherical
harmonic expansion of the form (11)

G
�
û; û′; s− s′

�
=
X
l;m

e−
lðl+1Þ
2lp

ðs′−sÞY *
lm

�
û
�
Ylm
�
û′
�
: [S35]

For the initial tangent vector û0 ≡ ûð0Þ at s= 0, where the bound
leg is attached to the actin, the harmonic constraint leads to a
probability distribution Pcðû0Þ given by

Pc
�
û0
�
=

νc
2πð1− e−2νcÞ exp

�
−
νc
2
�
û0 − ûc

�2�

=
ffiffiffiffiffiffiffi
πνc
2

r
1

sinh νc

X
l;m

Il+1=2ðνcÞY *
lm

�
ûc
�
Ylm
�
û0
�
:

[S36]

In the first line, the prefactor in front of the exponential is a nor-
malization constant. In the second line, we have rewritten the
exponential in a spherical harmonic expansion (13) involving
modified spherical Bessel functions of the first kind IνðxÞ. This
form will facilitate carrying out the moment integrals below.
Let t̂ be one of the three orthogonal unit vectors ûc, v̂c, or ŵc,

as defined in Fig. S3. These axes, with ûc being the constraint
direction, are the easiest to work with for moment calculations.
Using the definitions of Gðû; û′; s− s′Þ and Pcðû0Þ above, the
first- and second-order moments with respect to one of the axes t̂
can be written as

D
t̂ · rb

E
exact

=

*ZL
0

ds  t̂ · ûðsÞ
+

exact

=
ZL
0

ds
Z

dû0

Z
dûPc

�
û0
�
G
�
û0; û′; s

�
  t̂ · û;

D�̂
t · rb

�2E
exact

=

*ZL
0

ds
ZL
0

ds′  t̂ · ûðsÞ̂t · û
�
s′
�+

exact

= 2
ZL
0

ds
ZL
s

ds′
Z

dû0

Z
dû
Z

dû′

  Pc
�
û0
�
G
�
û0; û; s

�
  t̂ · ûG

�
û; û′; s′− s

�̂
t · û′:

[S37]

By using Eqs. S35 and S36 and the properties of spherical
harmonics, the integrals in Eq. S37 can be carried out exactly
to yield the moments for any axis t̂. Let us define the average
end-to-end component parallel to the constraint direction,
μexactk ≡ hûc · rbiexact (the first moments along v̂c and ŵc are
zero). Similarly, define the parallel and perpendicular end-

to-end SDs, σexactk ≡
�


ðûc · rbÞ2
�
exact − hûc · rbi2exact

�1=2
and σexact⊥ ≡


ðv̂c · rbÞ2
�1=2
exact =



ðŵc · rbÞ2

�1=2
exact. The results for these three quan-

tities are

μexactk =Lκ−1ð1− kÞLðνcÞ;

σexactk =
Lκ−1

3

 
2
�
3κ+ k3 − 1

�
− 9ðk− 1Þ2L2ðνcÞ−

6ðk+ 2Þðk− 1Þ2LðνcÞ
νc

!1=2
;

σexact⊥ =
Lκ−1

3

�
6κ− k3 + 9k− 8+

3
�
k3 − 3k+ 2

�
LðνcÞ

νc

�1=2
;

[S38]

where k≡ expð−κÞ and LðνcÞ≡ coth νc − ν−1c is the Langevin
function.
The corresponding moments calculated from the probability

distribution in Eq. S33 are

μk =
LLðT Þffiffiffi

π
p �

9
4
κðκ+ 4Þ+ 15

�
 
3
ffiffiffi
π

p ð10− 3κÞ
2k3=4

erfc

ffiffiffiffiffi
3κ

p

2
+ 3

ffiffiffiffiffi
3κ

p
ðκ+ 5Þ

!
;

σk =Lκ−1
 
2κ2ð3κ+ 10ÞðT − 2LðT ÞÞ

ð3κðκ+ 4Þ+ 20ÞT −
μ2k
L2

!1=2
;

σ⊥ =Lκ−1
�
2κ2ð3κ+ 10ÞLðT Þ
ð3κðκ+ 4Þ+ 20ÞT

�1=2
:

[S39]

To determine T , we will set μk from Eq. S39 equal to μexactk from
Eq. S38. The resulting expression for T is
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T =L−1
ffiffiffi
π

p ð3κðκ+ 4Þ+ 20Þð1− kÞk3=4LðνcÞ

2κ
� ffiffiffi

π
p ð10− 3κÞerfc

� ffiffiffiffiffi
3κ

p

2

�
+ 2

ffiffiffiffiffi
3κ

p
ðκ+ 5Þk3=4

�
0
B@

1
CA:

[S40]

Because the inverse Langevin function L−1ðxÞ cannot be ex-
pressed analytically, for the purposes of evaluation, we use the
Padé approximation L−1ðxÞ≈ xð3− x2Þ=ð1− x2Þ (14). For the pa-
rameter regimes κ � 1 (large stiffness) and νc � 1 (strong end-
tangent constraint), relevant to MyoV dynamics, Eq. S40 can be
further simplified to yield

T ≈ 1+
20νc

20+ 7κνc
: [S41]

Eqs. S33, S34, and S41 completely describe the end-to-end vector
probability distribution for the bound leg at zero load. By con-
struction, the T of Eq. S41 leads to a μk that closely agrees with
the exact value μexactk from Eq. S38. In addition, the other mo-
ments are reproduced well by the approximate probability distri-
bution, as shown in Fig. S4. The exact and approximate values
differ by no more than 7% over the entire parameter range of lp
and νc. This range covers the most likely parameters for MyoV
dynamics, as discussed in the main text.

Equilibrium End-to-End Probability of the Bound Leg Under Load.
In the presence of a load force F, the probability distribution
in Eq. S33 is multiplied by a factor of expðβFrbF̂ · r̂bÞ=
expðβFLð1− ξbÞ1=2F̂ · r̂bÞ. In the stiff limit κ � 1, the main con-
tributions to the end-to-end vector probability are for ξb � 1,
because rb approaches L, the leg contour length. Thus, the
contribution of the load can be approximated as expðβFLF̂ · r̂bÞ.
With this approximation, the overall form of Eqs. S33 and S34 is
preserved under load, with the substitutions T → T ′ and ûc → û′c.
The probability distribution becomes

PbðrbÞ=Abξ
−9=2
b exp

�
−
3κ
4ξb

+ T ′  û′c · r̂b
�
; [S42]

Ab =Af
T ′

sinhT ′
; [S43]

where the new effective tension along the leg, written in terms of
its x̂ and ẑ components, is

T ′=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT ′xÞ2 + ðT ′zÞ2

q
;     T ′x = T sin θc + βFL sin θF ;

T ′z = T cos θc − βFL cos θF :
[S44]

The new effective tension direction is û′c = sin θ′cx̂+ cos θ′cẑ, which
is oriented at an angle θ′c from the ẑ axis:

θ′c = θc + tan−1
�

βFL sinðθc + θFÞ
T − βFL cosðθc + θFÞ

�
: [S45]

Combining the Individual Leg Probabilities to Find the Total End-
to-End Vector Probability Distribution. The final step in the
derivation of PðrÞ is to evaluate Eq. S29. Using Pf from Eq.
S30 and Pb from Eq. S42, the convolution integral in Eq. S29
has the form

In the second step, we have carried out the integration over
the free leg end-to-end vector rf, with the delta function
making the radial variable ξf = 1− r2f =L

2 a function of r and rb:

ξf = 1−
r2 + r2b − 2rrb cos θb

L2 ; [S47]

where θb is the angle between r and rb. Because we are inter-
ested in probabilities of finding the free end of MyoV along the
actin filament, let us confine the rest of the calculation to r= zẑ,
where −2L≤ z≤ 2L (because this is the maximum range that the
two-legged structure of total contour length 2L can access). The
unit vector r̂b can be represented in spherical coordinates by
the polar and azimuthal angles ðθb;ϕbÞ, and û′c can be repre-
sented by ðθ′c;ϕ′c = 0Þ. Thus,

û′c · r̂b = cos θb cos θ′c + cosϕb sin θb sin θ′c: [S48]

Writing the integration element in Eq. S46 as drb = r2bd cos θbdϕb,
we can carry out the integral over ϕb using Eq. S48. The result is

P
�
zẑ
�
= 2πAfAb

ZL
0

r2bdrb

Z1
−1

d cos θb   ξ
−9=2
f ξ−9=2b

             × exp
�
−
3κ
4ξf

−
3κ
4ξb

+ T ′z cos θb
�
· I0ðT ′x sin θbÞ;

[S49]

where I0ðxÞ is the zeroth-order modified Bessel function of the
first kind. To simplify the integration, we will change variables
from ðrb; cos θbÞ to ðξb; ξf Þ. From the definitions of ξb and ξf , and
from Eq. S47, the two sets of variables are related by

rb =L
ffiffiffiffiffiffiffiffiffiffiffiffi
1− ξb

p
;     cos θb =

z2 +L2
�
ξf − ξb

�
2zL

ffiffiffiffiffiffiffiffiffiffiffiffi
1− ξb

p ; [S50]

leading to a Jacobian determinant jdetJj=L2=ð4jzjð1− ξbÞÞ for
the change of variables. Using these relations, Eq. S49 becomes

P
�
zẑ
�
=
L4 πAfAb

2jzj

ZubðzÞ
0

dξb

Zuf ðz;ubÞ
0

dξf   ξ
−9=2
f ξ−9=2b

         · exp

 
−
3κ
4ξf

−
3κ
4ξb

+ T ′z
z2 +L2

�
ξf − ξb

�
2zL

ffiffiffiffiffiffiffiffiffiffiffiffi
1− ξb

p
!

         · I0 T ′x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

 
z2 +L2

�
ξf − ξb

�
2zL

ffiffiffiffiffiffiffiffiffiffiffiffi
1− ξb

p
!2

vuut
0
B@

1
CA;

[S51]

PðrÞ=AfAb

Z
drb

Z
drf   ξ

−9=2
f ξ−9=2b exp

 
−
3κ
4ξf

−
3κ
4ξb

+ T ′  û′c · r̂b

!
δ
�
r− rb − rf

�

=AfAb

Z
drb   ξ

−9=2
f ξ−9=2b exp

 
−
3κ
4ξf

−
3κ
4ξb

+ T ′  û′c · r̂b

!
:

[S46]
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where the upper limits of integration are given by

ubðzÞ=
2jzj
L

−
z2

L2;     uf ðz; ξbÞ= ξb +
2jzj

ffiffiffiffiffiffiffiffiffiffiffiffi
1− ξb

p
L

−
z2

L2: [S52]

In the stiff limit κ→ 0, the main contributions to the integral
come from ξb � 1 and ξf � 1. Additionally, the location of
the binding sites we consider, jzj= 36 nm, is comparable to the
leg contour length L= 35 nm. We can then approximately carry
out the integral in Eq. S51 by replacing the integration limits
ub → 1 and uf → 1, and by substituting

z2 +L2
�
ξf − ξb

�
2zL

ffiffiffiffiffiffiffiffiffiffiffiffi
1− ξb

p →
z
2L

: [S53]

With these approximations, the integral in Eq. S51 evaluates to

P
�
zẑ
�
≈
8πL4AfAb

729κ7jzj

 
20

ffiffiffiffiffi
3π

p
e3κ=4erfc

 ffiffiffiffiffi
3κ

p

2

!
+ 3

ffiffiffi
κ

p
ðκð3κ+ 10Þ+ 20Þ

!2

   · I0

 
T ′x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

z2

4L2

r !
e
1
2ðT

′z z
L −3κÞ:

[S54]

Upon substituting in Eq. S32 for Af and in Eq. S43 for Ab, and
upon expanding PðzẑÞ up to the second order in κ, we get the
final simplified form of the probability. The result evaluated at
z= ±Δ is given by Eq. 20:

Pðr± Þ≈
ð3κð7κ+ 20Þ+ 200ÞT ′
1; 600πL2Δ sinhT ′

I0

0
@T ′x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

Δ2

4L2

s 1
Ae±

T ′zΔ
2L : [S55]

Together with Eq. S41 for T and Eq. S44 for T ′, we now have
a complete analytical expression for the probability distribution of
the MyoV free end at any location along the actin filament axis.
An analogous approach can be used to find PðrÞ analytically

at any r and not just along ẑ. The resulting 3D probability
distribution allows us to generate sample diffusive trajectories
for the end-to-end vector r in various MyoV kinetic pathways,

as shown in Fig. S5. These are numerical solutions to the
Fokker–Planck equation (15) for diffusion along an energy
surface UðrÞ= − kBT logPðrÞ with head diffusivity Dh.

4. Stall Force
Based on the earlier results for the step probabilities and first
passage times, one can derive a simple expression for the stall
force Fstall, defined by the condition that backward and forward
step probabilities are equal, Pf =Pb at F =Fstall. From Eqs. S15
and S21, the ratio of the two probabilities is

Pb

Pf
=
αð1+ bαÞðtd1 + thÞðtd1 + tTb − thÞ

gðb+ αÞtd1ðtd1 + tLbÞ
≈ g−1

αð1+ bαÞ
b+ α

: [S56]

The approximation in the second line is valid when td1 � tTb;   tLb,
which is typically the case.
Setting the right-hand side of Eq. S56 equal to 1, we can solve

for the value α= αstall at the stall force:

αstall =
g− 1+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg− 1Þ2 + 4gb2

q
2b

: [S57]

Using Eq. S9 for t±fp , Eq. S55 for the equilibrium free end prob-
ability Pðr± Þ, and the definition of T ′ from Eq. S44, we can
rewrite Eq. S57 as follows:

g− 1+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg− 1Þ2 + 4gb2

q
2b

= αstall =
Pðr−Þ
Pðr+ Þ

					
F=Fstall

= exp
�
−
ΔT
L

cos θc + βΔFstall cos θF

�
:

[S58]

This equation can be directly solved for Fstall, giving Eq. 10:

Fstall =
kBT
cos θF

0
@T
L
cos θc +

1
Δ
log

g− 1+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg− 1Þ2 + 4gb2

q
2b

1
A:

[S59]
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Fig. S1. Brownian dynamics simulation results (circles) for the Green’s functions of the end point of the two-legged MyoV structure, with νc = 184, lp = 310 nm,
and θc = 60∘. The plot shows 4πa2Gðr+,r+ + aê; tÞ as a function of time t, where Gðr+,r+ + aê; tÞ is the probability of diffusing a distance a from r+ to some point
r+ + aê, with jêj= 1. Results for three different values of a are displayed: a= 0:5 nm (red), a= 1 nm (green), and a=2 nm (blue). Error bars denote SE for the
simulation-derived values. For comparison, the solid curves represent the expression 4πa2ð4πDtÞ−3=2 expð−a2=ð4DtÞÞ, the right-hand side of Eq. S7 multiplied by
4πa2, with a best-fit value of D= 1:4± 0:1× 10−6 cm2=s.

Fig. S2. Relaxation times tr for the trailing end point of the two-legged MyoV structure to reach equilibrium after detachment, calculated from Brownian
dynamics simulations. Results are shown at two different strengths νc = 50,      180 of the bound leg power stroke constraint with θc = 60∘. (A) Relaxation times tr
at zero load as a function of leg persistence length lp. (B) Relaxation times tr at lp = 310 nm as a function of backward load force F. For comparison, three
analytically estimated rotational diffusion times are shown as horizontal dashed lines: trodðLÞ and trodð2LÞ (black) (Eq. S10) for a rigid rod of L and 2L, re-
spectively, and twðLÞ (red) (Eq. S11) for two rigid rods of L connected at a flexible hinge.

Fig. S3. Schematic diagram for the polymer model of MyoV, defining the free end-point vector r and the end-to-end vectors for the free ðrf Þ and bound ðrbÞ
legs, respectively. The unit vector ûc is the direction of the end-tangent constraint on the bound leg, and together with the two orthogonal unit vectors v̂c and
ŵc it forms a set of axes tilted at an angle θc from the ðx̂,ŷ,ẑÞ axes, where ẑ is oriented along the actin filament.
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Fig. S4. First and second moments of the end-to-end vector distribution for the bound leg when F= 0 , measured in units of leg persistence length lp. The
exact values (solid lines) are given by Eq. S38, whereas the approximate values (dashed lines) are taken from Eq. S39, with T defined by Eq. S41. (A) Moments as
a function of persistence length lp for fixed constraint strength νc = 180. (B) Moments as a function of νc for fixed lp = 310 nm.

Fig. S5. Sample trajectories of the end-to-end vector r= ðx,y,zÞ for each of the four MyoV kinetic pathways, calculated from a numerical solution (15) to the
Fokker–Planck equation with head diffusivity Dh and an energy landscape UðrÞ= − kBT logPðrÞ, with PðrÞ given by Eq. S46. (Upper) Trajectories in terms of z
(the distance along actin) vs.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
, with colors from yellow to red denoting progress in time, are shown for each pathway. (Lower) Corresponding zðtÞ for

the trajectory, using the same color-coding, is shown. (Upper) Superimposed are contour lines of PðrÞ for probabilities 1,2, . . . ,5 ·10−4 nm−3 (light gray to dark
gray). The pathways in A and B are at F = 0 pN, whereas those in C and D are at F = 2 pN ; hence, the PðrÞ distribution in the latter cases is shifted in the −ẑ
direction.
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