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Mechanical forces acting on cell adhesion receptor proteins regulate
a range of cellular functions by formation and rupture of noncovalent
interactions with ligands. Typically, force decreases the lifetimes
of intact complexes (“slip bonds”), making the discovery that these
lifetimes can also be prolonged (“catch bonds”) a surprise. We cre-
ated a microscopic analytic theory by incorporating the structures of
selectin and integrin receptors into a conceptual framework based
on the theory of stochastic equations, which quantitatively explains
a wide range of experimental data (including catch bonds at low
forces and slip bonds at high forces). Catch bonds arise due to force-
induced remodeling of hydrogen bond networks, a finding that also
accounts for unbinding in structurally unrelated integrin–fibronectin
and actomyosin complexes. For the selectin family, remodeling of
hydrogen bond networks drives an allosteric transition resulting
in the formation of the maximum number of hydrogen bonds de-
termined only by the structure of the receptor and independent of
the ligand. A similar transition allows us to predict the increase in
the number of hydrogen bonds in a particular allosteric state of
α5β1 integrin–fibronectin complex, a conformation which is yet to
be crystallized. We also make a testable prediction that a single
point mutation (Tyr51Phe) in the ligand associated with selectin
should dramatically alter the nature of the catch bond compared
with the wild type. Our work suggests that nature uses a ductile
network of hydrogen bonds to engineer function over a broad
range of forces.

Cells communicate with each other and their surroundings to
maintain tissue architecture, allow cellular movement, trans-

duce signals, and heal wounds (1). Important components in many
of these processes are cell adhesion molecules—proteins on cell
surfaces that recognize and bind to ligands on other cells or the
extracellular matrix (1, 2). For example, adhesion of leukocytes
to the endothelial cells of the blood vessel is a vital step in rolling
and capturing of blood cells in wound healing, and is mediated by
the selectin class of receptor proteins (3). The functional responses
of cell adhesion molecules are often mechanically transduced by
shear stresses and forces arising from focal adhesions to the cyto-
skeleton or simply the flow of blood in the vasculature. Under
stress, molecules undergo conformational changes, triggering bio-
physical, biochemical, and gene regulatory responses that have been
the subject of intense research (4, 5). Lifetimes of adhesion com-
plexes are typically expected to decrease as forces increase (6).
However, the response of certain complexes to mechanical force
exhibits a surprisingly counterintuitive phenomenon. Lifetimes in-
crease over a range of low force values, corresponding to catch-
bond behavior (7). At high forces, the lifetimes revert to the con-
ventional decreasing behavior, characteristic of a slip bond (6). In
retrospect, the plausible existence of catch bonds was already
evident in early experiments by Greig and Brooks, who discovered
that agglutination of human red blood cells using the lectin Con A
increased under shear (8). Although not interpreted in terms of
catch bonds, their data showed lower rates of unbinding with in-
creasing force on the complex. Given the importance of mecha-
notransduction in cellular adhesions, a quantitative and structural
understanding of this surprising phenomenon is imperative.
Direct evidence for catch bonds in a wide variety of cell adhe-

sion complexes has come from flow and atomic force microscopy

(AFM) experiments in the last decade (9–11), along with examples
from other load-bearing cellular complexes like actomyosin bonds
(12) and microtubule–kinetochore attachments (13). The catch-
bond lifetime exhibits nonmonotonic biphasic behavior—increasing
up to a certain critical force and decreasing at larger forces. The
structural mechanisms leading to catch-bond behavior have largely
been elusive, although experiments have provided key insights for
selectins (14, 15) and integrins (16, 17). In these systems, the
rupture rate of the ligand from the receptor depends on an
angle between two domains in the receptor molecule (Fig. 1).
Conformations with smaller angles detach more slowly than those
with large angles. In the case of integrins, multiple conformations
at varying angles have been crystallized (17), whereas for selectins,
only two (Fig. 1) have been found so far in the crystal structures (14).
In the absence of an external force, the molecule fluctuates between
conformations corresponding to a variety of angles, including the
larger angles from which the ligand can rapidly detach. With the
application of force, the two domains increasingly align along
the force direction, restricting the system to small angles and longer
lifetimes, until large forces again reduce the barrier to rupture.
Previously, theories based on kinetic models with the assump-

tion of a phenomenological Bell-like coupling of rates to force
(18–21) have been used to explain catch-bond behavior. However,
the parameters extracted from these kinetic models cannot be
easily related to microscopic physical processes in specific catch-
bond systems. More importantly, such models merely rationalize
the experimental data, and do not have predictive power. The
large scale of catch-bond lifetimes, ∼10−104 ms, makes it impos-
sible to directly observe unbinding in a realistic all-atom simula-
tion, much less the macroscopic consequences of mutations.
Here, we solve the difficulties alluded to above by creating a

new theoretical approach. By building on the insights from the
structures of cell adhesion complexes, we introduce a micro-
scopic theoretical model that captures the essential physics of
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the angle-dependent detachment, and its implications for catch-
bond behavior. Taking a cue from the crystal structures of selectin
and integrin, we construct a coarse-grained energy function for
receptor–ligand interactions. The model yields an analytic ex-
pression for the bond lifetime as a function of force, which gives
excellent fits to a broad range of experimental data on a number
of systems. The extracted parameters have clear structural in-
terpretations, and their values provide predictions for energetic
and structural features like strength of hydrogen bonding net-
works at the receptor–ligand interface. Where estimates of these
properties can be directly obtained from crystal structures, our
predictions are in remarkable agreement. The energy scales iden-
tified through the model are specific enough to allow predictions
for structures not yet crystallized, and suggest mutation experi-
ments that would modify catch-bond behavior in quantifiable
ways. For the selectins, we predict how a specific mutation in the
PSGL-1 ligand will alter its unbinding from P-selectin under force,
and provide new interpretation of data from L-selectin mutants
(20). Interestingly, the experimental fits suggest that both P-
and L-selectin have a characteristic, ligand-independent energy
scale, determined by the chemistry of their binding interfaces.
For integrins, we predict the strength of extra interactions that
should be observed in a crystal structure of the α5β1–fibronectin
complex in an open state. The generality of the theory is fur-
ther established by obtaining quantitative agreement for the
catch-bond behavior in actomyosin complexes. Our theory pro-
vides, to our knowledge, the first structural link between the
catch- to slip-bond transition in cell adhesion complexes, cov-
ering a broad range of forces and lifetimes.

Theory
Structural Basis of Catch-Bond Model. We now define our model
using the structures of P-selectin, which has been crystallized in
two conformations: a “bent” (Fig. 1A) and “extended” state (Fig.
1B) (14). The two states differ by the angle which the epidermal
growth factor (EGF) domain (green in Fig. 1 A and B) assumes
with respect to the lectin domain (gray–beige). Although ligands
can bind to lectin in both conformations, cocrystallization with
the ligand (the truncated N-terminal portion of the glycopro-
tein PSGL-1) was achieved only for the extended state. In the
extended state, there are two major regions of the lectin domain
(B0 and B1, colored purple in Fig. 1 A–D) that form substantial
hydrogen bond networks with the ligand, thereby stabilizing the

complex. Based on alignments of the lectin domain in the bent
and extended states (Fig. 2A), it is believed that the binding
interface is remodeled in the bent conformation (14, 22). The
region B1 (a loop between Asp82 and Glu88, shown in Fig. 2A,
Inset) rotates so that it can no longer engage the ligand. This
angle-dependent rearrangement results in weaker ligand attach-
ment, and hence explains the shorter bond lifetimes in the bent vs.
the extended conformation.
Our minimal model, which captures the structure-based angle-

dependent dissociation, describes the ligand–receptor interac-
tion through an effective spring with bond vector r ≡ (r, θ, ϕ)
between a pivot point within the receptor and a point in the ligand
(Fig. 1 C and D). The pivot point is fixed at the origin, and the
ligand is under an external force Fẑ along the z axis. The energy
associated with the spring is given by the potential

Uðr; θÞ= 1
2
ðk0 + k1ð1+ cos θÞÞðr− r0Þ2 −Fr cos θ; [1]

with k0, k1 > 0. The first term is an elastic energy, where r0 is the
natural length of the bond magnitude r, and k0 + k1(1 + cos θ) ≡
k(θ) is an angle-dependent spring constant. The second term is
the contribution due to the mechanical force F. The bond rup-
tures if r ≥ b, where b ≡ r0 + d and d is the transition state
distance. The structural inspiration of our model naturally leads
to a multidimensional potential energy, dependent on both r and
θ, which is a key requirement for a physically sensible description
of catch-bond behavior. Any one-dimensional potential with rup-
ture defined by a single cutoff in some reaction coordinate will
always exhibit monotonic lifetime behavior as a function of force.
We assume that the time evolution of the vector r follows a Fokker–
Planck equation, describing diffusion on the potential surface
U(r, θ) with a diffusion constant D. We define the lifetime of the
bond τ(F) at a given force F as the mean first passage time from
rmin(F), the position of the minimum in U, to any r with r = b.
Implicit in this diffusive picture is the assumption that the angle θ
can change continuously. This is a reasonable approximation even
if the receptor–ligand complex fluctuates between several discrete
angular states (17), assuming the energy barriers between the
states are such that the interconversion between states happens
on much faster timescales than τ(F). The presence of the barriers

A C E

B D F
Fig. 1. Abstraction of the model based on structure.
(A) Crystal structure of P-selectin (14) in the bent
conformation [Protein Data Bank (PDB) ID code:
1G1Q]; (B) the extended conformation (PDB ID code:
1G1S). The lectin (gray–beige) and EGF (green)
domains are labeled, along with two regions of
the ligand binding interface (B0 and B1, purple). The
ligand (an N-terminal fragment of the glycoprotein
PSGL-1) is only cocrystallized in the extended state.
(C and D) Schematic conformations of our model,
corresponding to A and B. (E and F ) Plots of the
potential U(r, θ) at F = 0 pN and F = 50 pN, respec-
tively, with k0 = 80 kBT/nm

2, k1 = 20 kBT/nm
2, r0 =

1.0 nm, and b = 2 nm. The energy U(b, θ) at the
transition state is highlighted in red.

Chakrabarti et al. PNAS | June 24, 2014 | vol. 111 | no. 25 | 9049

CH
EM

IS
TR

Y
BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y



would in this case be incorporated through a renormalization of
the effective diffusion constant D (23).
We show in Fig. 1E a representative zero-force potential energy

surface U(r, θ), with the energy at rupture U(b, θ) highlighted in
red. The form of k(θ) makes it energetically favorable for bond
rupture at θ = π (the bent state), with a cost E0 = k0d

2/2 to
dislodge the ligand to the failure point. In the opposite limit of
θ = 0 (the extended state), energy for rupture is highest, with
a cost E0 + E1, where E1 = k1d

2. The values of E0 and E1 cor-
respond to the stabilization energies associated with the ligand in
the two allosteric (bent and extended) states. However, as F is
increased, the bond aligns along ẑ, and the minimum in U(r, θ)
shifts toward θ = 0 (Fig. 1F), biasing the system toward the ex-
tended state. Thus, we expect the lifetime τ(F) to initially in-
crease with F and eventually decrease at forces sufficiently large
to reduce the rupture barrier.
Although the schematic diagram of the model in Fig. 1 C and

D draws the vector r between a pivot at the EGF–lectin interface
to the tip of the ligand, one should note that the actual ligand–
lectin complex does not behave like a perfectly rigid object ro-
tating about a hinge, nor does it cover the entire angular range
between θ = 0 and π. Because proteins are deformable, the pivot
location and the length r0 will depend on the compliance of the
specific domains involved in reorientation. Hence, we expect r0
to be of the order of, or less than, the size of the localized domains
that rotate to become restructured under force. It therefore fol-
lows that the structures of the complex in different allosteric states
provide valuable insights into their response to force. The length
scale d reflects the brittleness of the bonding interactions (24),
with larger d indicating a malleable bond interface which can be

deformed over longer distances before the complex falls apart.
The two energy scales E0 and E1 also have physical interpretations,
with E0 being roughly the total strength of noncovalent inter-
actions between the region B0 and the ligand, whereas E1 is the
additional contribution from the region B1 in the extended
conformation.

Results and Discussion
Mean Bond Lifetime. By assuming that τ(F) is much longer than
the local equilibration time around rmin(F), the lifetime of the
complex is approximately given by

τðFÞ≈
ffiffiffi
π

p
  r0ðE1 − 2Fðd+ r0ÞÞeβðE0+dFÞ�e2βFr0 − 1

�
4DðβE0Þ3=2Fð1+ r0=dÞ2ð1− eβð2Fðd+r0Þ−E1ÞÞ

; [2]

where β = 1/kBT, kB is the Boltzmann constant, and T is the
temperature. The full details of the derivation are in SI Text. The
central result of this work in Eq. 2 provides an analytic expres-
sion for the mean first passage time in terms of the microscopic
energy and length scales covering both the catch- and slip-bond
regimes. To set a reasonable scale for D, we make it equal to the
diffusivity of a sphere of radius r0, D = kBT/6πηr0, where η is the
viscosity of water. (A prefactor in D due to molecular shape can
be absorbed as a small logarithmic correction to the energy scale
E0.) With this assumption, Eq. 2 becomes an equation with four
parameters: E0, E1, d, and r0. We validated the approximation
underlying Eq. 2 by comparison with Brownian dynamics simu-
lations of diffusion on U (details in SI Text), which showed ex-
cellent agreement with our analytical theory.
For βFd � 1, τ(F) decays exponentially in a manner similar to

the standard Bell model for systems exhibiting slip bonds, τ(F) ∼
exp(−βdF). The decay rate is controlled by the transition state
distance d. The characteristic catch-bond behavior occurs at
smaller F, where we see a biphasic τ(F) peaked at F = Fp,

Fp ≈
AE1

2ðr0 + dÞ; [3]

with a prefactor A ∼ O(1). The ratio of the peak height τ(Fp) to
the lifetime τ(0) at zero force, which is a measure of the strength
of the catch bond, scales like

τ
�
Fp

�
τð0Þ ≈

4A′ðd+ r0Þ
r0E2

1
sinh

�
E1

2

�
sinh

�
r0E1

2ðd+ r0Þ
�
; [4]

with a prefactor A′ ∼ O(1). From Eqs. 3 and 4 we see that E1 → 0
leads to Fp → 0 and τ(Fp)/τ(0) → 1. In this limit, the model
predicts only slip-bond behavior, where the lifetime decreases
monotonically with force. Thus, our model interpolates between
catch-bond and slip-bond regimes by varying the energy scale E1.

Analysis of Experimental Data.We first establish the efficacy of the
theory by analyzing experimental data for τ(F) for a variety of
complexes. The fits in Fig. 3 (selectins) and Fig. 4 (nonselectin
complexes) show that there is excellent agreement between the
analytical theory and measurements, which is remarkable because
our microscopic model shows that only a small number of fit-
ting parameters suffice to fit nine complexes with vastly dif-
fering architectures. These experiments involve applying force
to molecular complexes either through AFM or optical traps,
with the force initially ramped from zero to a given value F.
Bonds which survive the ramp are then held at constant F until
rupture. If the initial ramp is sufficiently slow such that the
system always remains quasiadiabatically in equilibrium at the
instantaneous applied force (25), the subsequent duration of
the bond while at constant F, averaged over many trials, provides
an accurate estimate of τ(F). [Extremely high ramp speeds may
lead to nonequilibrium artifacts (26).]

A

B

Fig. 2. Receptor–ligand hydrogen bond networks in P-selectin and α5β1
integrin. (A) The crystal structures from Fig. 1A and B superimposed with aligned
lectin domains. (Inset) Remodeling of the B1 region of the ligand–binding in-
terface (the Asp82–Glu88 loop). In the extended state (beige) this loop forms
a network of hydrogen bonds (dashed lines) with the ligand (to be compared
with E1 of our model). In the bent state (gray) the loop rotates sufficiently far
that it is unlikely to participate in binding (14, 22). (B) Hydrogen bond network
between ligand RGD and α5β1 integrin in the closed-headpiece conformation
(PDB ID code: 3VI4). The integrin domains are colored as follows: β-propeller and
βA in green (cartoon and line representation), thigh in cyan, hybrid in pink, and
plexin-semaphorin-integrin in brown. The ligand is colored magenta (stick or
line) and the metal-ion–dependent adhesion site magnesium ion is red (sphere).
This network should be compared with E0, predicted from our model.
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To establish that our theory is general, we analyzed experimental
results from both selectin systems [P-selectin (10); L-selectin (20)],
and others [fibronectin disassociating from a truncated construct
of α5β1 integrin (11) and myosin unbinding from actin (12)].
Details of the maximum-likelihood procedure for obtaining the
best-fit parameter values (Table 1) are in SI Text. All of the
systems in Figs. 3 and 4 exhibit catch bonds at low forces except
in Fig. 3B, which for comparison shows P-selectin forming a slip
bond (E1 = 0 arises naturally by fitting the theory to experimental
data) with the antibody G1.
Selectin family. Fig. 3A includes data for P-selectin with two dif-
ferent forms of PSGL-1 ligand: sPSGL-1, which is a monomer
interacting with single lectin domains, and PSGL-1, which is
a dimer capable of simultaneously forming two bonds with two
neighboring lectin domains (10). [All other selectin complexes,
including L-selectin/PSGL-1 (20) in Fig. 3 C and D, involve only
monomeric interactions.] We fit both curves in Fig. 3A with the
same set of parameters, using τ(F) from Eq. 2 for the monomeric
case, and in the dimer case τdim(F) ≡ τ(F/2) + τ(F/2)[1 + krτ(F/2)]/2.
When the dimer is intact, each bond feels a force F/2. When one of
the bonds breaks, the intact bond still feels a force approximately
equal to F/2, due to the large stiffness and roughly constant dis-
placement of the AFM cantilever (27). In the latter case, the
broken bond can reform with some rate kr, which adds one fitting
parameter. τdim(F) is a model that accounts for all these possibili-
ties. The resulting fits in Fig. 3A show that a total of five parameters

(kr ∼ 1.1 ± 0.3 s−1, the rest listed in Table 1) can simultaneously
capture the general lifetime behaviors of both data sets.
Physical meaning of the parameters. A sine qua non of a valid theory
of any phenomenon is that the extracted parameters must have
sound physical meaning. To provide a structural interpretation of
the extracted parameters for the selectin systems, it is instructive
to compare the resulting energy and length scales to what we
know about selectin bonds independent of the model. From the
crystal structure of the P-selectin–PSGL-1 complex in Fig. 1B, we
estimated that the regions B0 and B1 involve, respectively, 14 and
6 ligand–lectin hydrogen bonds (the B1 bonds are shown in Fig.
2A). We used the software PyMol (28) to count hydrogen bonds,
with a distance cutoff of 0.35 nm for the heavy atoms. The cor-
responding energy scales from Table 1 are E0 = 17 kBT and E1 =
9 kBT, which gives an enthalpy of ∼1.2−1.5 kBT per hydrogen
bond. This range is consistent with earlier estimates of the strength
of hydrogen bonds in proteins (29). The distance from the
EGF domain–lectin interface to the lectin–ligand interface is
∼3 nm. Because the crystal structures suggest that restructuring
of hydrogen bonds in this region leads to catch-bond behavior, r0
should be ∼3 nm or less. The fitted values of r0 ∼ 0.2−2.0 nm for
L- and P-selectin lie well within this estimate. The transition dis-
tances d vary between ∼0.1 and 0.6 nm, which is the range typical
for proteins (30). Given the realistic values for all of the fitted
parameters, our theoretical model is an accurate coarse-grained
description of selectin-type systems.
The sum E0 + E1 is essentially constant for a given selectin

receptor, independent of the ligand: E0 + E1 ∼ 27 kBT for P-selectin
and ∼31 kBT for L-selectin. This suggests that the maximum
number of possible interactions is fixed by the interactions as-
sociated with the receptor interface. For each ligand there is a
different partitioning of these interactions among those that
contribute to E0 and E1. The values of E0 and E1 can be estimated
from the structures alone using E0 ∼ nb«hb and E0 + E1 ∼ ne«hb,
where nb, ne are the number of hydrogen bonds in the bent and
extended states, respectively, and «hb is the strength of a hydrogen
bond. For the catch-bond complexes, E1 ∼ 7−10 kBT, or roughly
5–8 noncovalent bonds. For P-selectin and G1 (Fig. 3B), all
interactions contribute to E0, and we get slip-bond behavior in-
stead; G1 is a blocking monoclonal antibody for P-selectin. In
this case the binding is so strong, involving all possible interactions
at the interface, that there is no room for additional stabilization
under alignment (E1 = 0). The finding that the ligands achieve
nearly the same value of E0 + E1 means that in the aligned state

A B

C D

Fig. 3. Experimental best-fit results for bond
lifetime τ(F ) versus force F for selectins. A and B
correspond to the receptor P-selectin (Psel) while
C and D correspond to receptor L-selectin (Lsel).
The ligands are indicated above the figures. The
symbols are experimental results and the lines are
analytical curves from Eq. 2, with parameters
given in Table 1. The sources for the data are (A
and B), ref. 10; (C and D), ref. 20. For A and B, the
symbol shapes denote three alternate ways of
estimating experimental τ(F ). Squares: average of
the lifetimes; triangles: SD of the lifetimes; circles:
−1/slope in the logarithmic plot of the number of
events with lifetime t or more versus t. Up to
sampling errors, these estimates are equivalent
for systems with exponentially distributed bond
lifetimes.

A B

Fig. 4. Experimental best-fit results for bond lifetime τ(F) for nonselectin
complexes. The receptor ligand systems are indicated at the top. Sources of
the data are (A), ref. 11 and (B), ref. 12.
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each of the considered ligands is capable of maximally exploiting
the binding partners among the receptor residues. Our model
predicts that if the ligand were made defective, by truncating or
mutating some portion of the ligand binding sites so that their
interactions with the receptor were eliminated, the sum E0 + E1
should decrease. We will return to this case below in discussing
a mutant of the ligand PSGL-1.
Integrin. In the case of the integrin–fibronectin complex, we took
as an example AFM data for a truncated integrin (only the head-
piece of α5β1) binding to fibronectin FNIII7−10 (fibronectin
fragment comprising the 7–10th type III repeats) (11). There is
ample evidence for an angle-dependent detachment of ligand in
the integrin headpiece (16), where the β-hybrid domain swings
out from the α-subunit via multiple intermediate states (17). Our
model is well suited to describe these structural changes, and the
quality of fit to experimental data (Fig. 4A) shows that the physics
governing the effect of force on selectin complexes also holds for
the complex involving integrin. We can compare some of the fitted
parameters with a recently obtained crystal structure of the α5β1
headpiece complexed with fibronectin [only the arginine-glycine-
aspartic acid (RGD) peptide portion of fibronectin is resolved in
the structure; Fig. 2B] (31).
Because the structure shows the integrin headpiece in a closed

(large-angle) conformation, we can directly compare the number
of hydrogen bonds with the parameter E0. As shown in Fig. 2B,
there are nine hydrogen bonds formed between the headpiece
domain and the RGD peptide. In addition, the acidic residue
Asp forms a salt bridge with the ligand residue Arg. Beyond the
interactions that can be ascertained from the crystal structure, it
is also known that additional “synergy” sites in the ligand, not
visible in the structure, play a role in binding. From the measured
decrease in binding affinity of fibronectin fragments lacking the
synergy sites, their contribution to the binding energy can be
estimated to be ∼2−4 kBT (31). Combining this with the hydrogen
bonds and salt bridges seen in the structure [using our earlier
range of 1.2−1.5 kBT per hydrogen bond, and 4−8 kBT for the
salt bridge (32)], we get an estimated total of E0 = 17–26 kBT.
Our fitted result E0 = 23 kBT from the model falls in this
range, and is therefore consistent with the structural analysis.
The fitted value of r0 is also reasonable, given that the longest
axis of the hybrid domain is ∼4 nm. The parameter d is again
well within the range of transition state distances expected in
proteins. Our model predicts that E1 = 12 kBT, the extra interac-
tion strength that would be gained in an open conformation of the
α5β1–fibronectin complex. This prediction can be verified once
crystal structures of the open conformation become available.
Actomyosin. Finally, in the case of actomyosin catch bonds (Fig.
4B), no crystal structures exist for the complex and an angle-
dependent lifetime has not been established. However, we can use
our theory to propose the origins of catch-bond behavior in these
complexes based on experimental data. There is strong evidence
that the upper 50K and lower 50K domains surrounding the major

cleft in the motor head behave like pincers—binding to actin
tightly in the ADP and rigor states, thereby forming a tight com-
plex (33). Once ATP binds, the pincers move apart (the upper 50K
domain breaks contact with actin) by an allosteric mechanism (34),
thus allowing the motor head to unbind from actin faster. While in
the ADP–rigor state, if an external force is applied through the
lever arms of myosin, local rearrangements and rotations would
cause the N-terminal domain and the two 50K domains to align
with the direction of force. Along with these local reorientations,
the force would also stretch the domains, causing narrowing of the
major cleft, and facilitating increased interactions of both 50K
domains with actin. This mechanism would lead to catch-bond
behavior, in a manner similar to the FimH-mannose adhesions in
Escherichia coli (35). Our fitted value of r0 shows that the align-
ments occur over a length scale ∼2.4 nm, which agrees well with
single molecule results showing that the cross-bridge compliance
resides only locally in the actin-motor domain of the actomyosin
complex (36).

Predictions for Mutations in Selectin Complexes. Because the energy
scales in our model correspond to the strengths of noncovalent
bonding networks, we can use our theory to predict and explain
the impact of mutations on the bond lifetime, thus providing a
framework for engineering catch bonds with specific properties.
We will consider two examples, one a modification of the ligand,
the other of the receptor in selectin systems. A recent study (37)
considered a PSGL-1 mutant where Tys51, a sulfated tyrosine
that makes one hydrogen bond with Arg85 in the B1 region of
P-selectin (Fig. 2), is replaced by phenylalanine (Phe), which
cannot form the hydrogen bond. Kinetic assays showed that the
mutant has a weaker binding affinity to P-selectin, but a zero-force
off rate that remains virtually unchanged from the wild type. The
lifetime under force has not yet been measured, but our model
predicts that removing one hydrogen bond from B1 should de-
crease E1 by ∼1.3 kBT. Using the reduced value for E1 with all
other parameters the same as in the wild type (first row of Table 1),
we predict that the τ(F) curve (dashed red line labeled Y51F in
Fig. 3A) should be dramatically different from the wild type.
Relative to the wild type, the peak is decreased by a factor of
3.4, and shifted slightly (from 24 to 21 pN). Because effects of a
mutation in E1 are most relevant to alignment under force, the low
force behavior is relatively unperturbed, similar to the kinetic
assay results: τ(F) of the mutant for F < 2 pN differs less than
20% from the wild type.
The second example, where experimental τ(F) data are avail-

able, involves two receptor mutations performed on L-selectin (20).
The authors compared the τ(F) behavior of wild-type L-selectin to
a mutant where Asn138 was changed to Gly. The mutation ef-
fectively breaks a hydrogen bond in the hinge region, between
Tyr37 and Asn138. Two different ligands (PSGL-1 and 6-sulfo-
sLex) both showed the same trends: the peak in the τ(F) curve
for the mutant was shifted up and toward smaller forces, relative
to the wild type [Fig. 3 C and D). To determine the minimal
perturbation in the parameters that would produce this shift, we
simultaneously fit the wild-type and mutant data sets for each
ligand, allowing only a subset of parameters to change for the
mutant. The most likely subset, determined using the Akaike
information criterion (see SI Text for details), involved only
changes in the energy scales E0 and E1. The fit results are shown
in Table 1. Both ligands show a similar pattern: E1 decreased
by ∼1.5−1.7 kBT in the mutant, whereas E0 increased by ∼1.5−1.6
kBT. The magnitudes of the energy changes suggest that the en-
thalpy loss due to a single hydrogen bond contributing to E1 in the
wild type is compensated by an increase in E0. The mutation gives
added flexibility to the lectin domain, allowing it to bind the ligand
more effectively in both the bent and extended conformations.
Thus, a contact between the ligand and receptor in B1 (Fig. 1) that
forms only at small angles in the wild type is present at all angles in
the mutant.

Table 1. Best-fit parameter values of the catch-bond model for
the various experimental complexes shown in Figs. 3 and 4

Complex E1, kBT E0, kBT d, nm r0, nm

Psel/(s)PSGL-1 9.3(2) 17.2(3) 0.56(2) 2.0(1)
Psel/G1 0 26.73(4) 0.51(3) 2.0*
Lsel/PSGL-1 10.2(7) 20.3(6) 0.14(4) 0.38(7)
LselN138G/PSGL-1 8.7(6) 21.8(5) 0.14(4) 0.38(7)
Lsel/6-sulfo-sLex 8.7(7) 22.7(4) 0.17(4) 0.23(5)
LselN138G/6-sulfo-sLex 7.0(7) 24.3(3) 0.17(4) 0.23(5)
Integrin–fibronectin 12(1) 23(1) 0.7(1) 0.5(2)
Actin–myosin (ADP) 4.1(3) 18.2(5) 0.47(4) 2.6(5)
Actin–myosin (rigor) 3.9(4) 18.4(8) 0.50(5) 2.2(7)

Parentheses denote uncertainties in the least significant digit.
*For this Psel slip-bond system, the lack of data at small forces prevents
independent fitting of r0, so its value is set to the r0 for Psel/(s)PSGL-1.
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Conclusions
The general principle for the formation of catch bonds emerg-
ing from experiments and theory is an increase in stabilizing
interactions as a result of topological rearrangements of protein
domains under force (19, 22). Whereas we quantitatively establish
the mechanism for certain classes of protein complexes in this
work, recent computational studies on a knotted protein (38) and
a long α-helix (39) suggest that the same principle could lead to
nonmonotonic unfolding lifetimes in single proteins as well. In the
former, the protein thymidine kinase was studied, where a threa-
ded loop is surrounded by a knotting loop, forming a slipknot (38).
At intermediate forces, the knotting loop shrinks faster than the
threaded loop, effectively leading to increased interactions be-
tween the loops and hence an increased barrier to unfolding. At
smaller forces, the threaded loop shrinks faster and slips out of
the knotting loop before any extra interactions can form. In the
beta–myosin helix studied using molecular simulations with the
milestoning algorithm (39), at intermediate forces broken hy-
drogen bonds from the native alpha helix secondary structure
reform to create a longer-lived force-stabilized pi helix struc-
ture, thereby leading to a catch-bond-like effect. More generally,
we suggest that if the number of hydrogen bond or side chain
interactions can be increased in single-domain proteins by force-
induced structural rearrangements, then such systems should ex-
hibit catch-bond behavior. This is likely to be the case in mamma-
lian prions which have a number of unsatisfied hydrogen bonds in
the functional state (40). Thus, it is increasingly becoming clear that

diverse force-induced topological rearrangements are used by
nature as a mechanism to modulate bond lifetimes.
At the larger scale of protein complexes, one can ask whether

the rearrangements responsible for catch bonds among different
biomolecule families share common features. From structure-
based observations in selectin and integrin systems, we have shown
that a model based on force-dependent rotation of protein domains,
facilitating enhanced interactions with their binding partner,
explains experimental observations remarkably well. Our precise
analytical theory quantitatively reproduces data on a variety of
structurally unrelated complexes with lifetimes spanning nearly
four orders of magnitude. More importantly, the key parameters
of the theory are linked to the formation (or disruption) of a net-
work of hydrogen bonds and/or salt bridges. Because the strength
of these interactions can be estimated, our theory can be readily
used to predict the effects of mutations, as demonstrated for the
selectin complexes. Interestingly, analysis of experimental data
allowed us to predict the strength of additional hydrogen bonds
that form in the open α5β1 integrin–fibronectin complex. The
specificity of our model, with very few parameters, lays a foun-
dation for synthetic mechanochemistry (41): designing and fine-
tuning catch-bond adhesion complexes with a desired set of load-
bearing characteristics.
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Derivation of the Equation for Bond Lifetime
The dynamics of our model can be described by the probability
density Ψ(r, t) to find the system with bond vector r = (r, θ, ϕ) at
time t. This probability evolves according to the Fokker–Planck
equation in spherical coordinates,

∂Ψ
∂t

=
D
r2

∂
∂r

�
r2e−βU
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�
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+
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r2 sin2 θ
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�
;

[S1]

with β = 1/kBT. Eq. S1 describes diffusion on the energy surface
U(r, θ),

Uðr; θÞ= 1
2
ðk0 + k1ð1+ cos θÞÞðr− r0Þ2 −Fr cos θ; [S2]

with diffusion constant D. We define the marginal probability
P(r, θ, t) by multiplying Ψ with the spherical Jacobian and inte-
grating over the azimuthal angle ϕ,

Pðr; θ; tÞ≡ r2 sin θ
Z2π

0

dϕΨðr; tÞ: [S3]

Because U is independent of ϕ, carrying out the operation in Eq.
S3 and using Eq. S1 leads to a 2D Fokker–Planck equation for
P(r, θ, t),
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in terms of a modified potential

V ðr; θÞ=Uðr; θÞ− kBT log
�
r2 sin θ

�
: [S5]

For a given force F, we are interested in the mean first passage
time (MFPT) τ0(r, θ, F) from a point (r, θ) with r < b to any point
(b, θ′) at the boundary defining bond rupture. The MFPT sat-
isfies the following equation (1), derived from the backward
Fokker–Planck equation:

D
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e−βV

∂τ0
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�
+

D
r2

∂
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�
e−βV

∂τ0
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�
=−e−βV ; [S6]

with boundary condition τ0(b, θ′, F) = 0 for all θ′. Because the
2D first-passage problem in Eq. S6 cannot be solved analytically,
we will approximately map it to a one-dimensional problem. In-
tegrating Eq. S6 over θ leads to

D
∂
∂r

Zπ

0

dθ  e−βV ðr;θÞ ∂
∂r
τ0ðr; θ;FÞ=−

Zπ

0

dθ  e−βV ðr;θÞ: [S7]

The second term in Eq. S6 vanishes under the integration be-
cause exp(−βV(r, θ)) → 0 in the limits θ → 0+ and θ → π−, as can
be seen from Eq. S5.

To evaluate the integral on the left-hand side of Eq. S7 we
make a saddle-point approximation, replacing ∂τ0(r, θ, F)/∂r
with, ∂τ0(r, θm(r), F)/∂r, where θm (r) is the location of the
minimum of V(r, θ) at a fixed radius r. For our potential, a
single such minimum exists for any given r, making θm (r)
a well-defined function. The result is an approximate one-
dimensional MFPT equation,

D
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�
=−e−β ~V ðrÞ; [S8]

where ~τ0ðr;FÞ≡ τ0ðr; θmðrÞ;FÞ and the effective one-dimensional
potential ~V ðrÞ is given by
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With the boundary condition ~τ0ðb;FÞ= 0, Eq. S8 can be solved
for ~τ0ðr;FÞ,

~τ0ðr;FÞ= 1
D

Zb

r

dr′  eβ ~V ðr′Þ
Zr′

0

dr″e−β ~Vðr″Þ: [S10]

The function ~V ðr′Þ is a monotonically increasing function of r′ at
large r′. Hence the integral over r′ in Eq. S10 gets its dominant
contribution from r′ near the upper limit b, due to the presence
of the expðβ ~V ðr′ÞÞ term. To simplify the integral, we will make
two approximations: (i) Expand ~V ðr′Þ≈ ~V ðbÞ+ ~V ′ðbÞðr′− bÞ. (ii)
Assume b� rm, where rm is the location of the minimum in ~V ðrÞ,
so that the upper limit in the inner integral over r″ can be replaced
by ∞. If the initial position r is close to the potential minimum at
rm, so that b � r, the integrals in Eq. S10 can be then approxi-
mately carried out to yield

~τ0ðr;FÞ≈ eβ ~V ðbÞ

βD~V ′ðbÞ

Z∞

0

dr″  e−β ~Vðr″Þ =
h
D~P′ðbÞ

i−1
; [S11]

where

~PðrÞ≡ ~Z
−1
e−β ~V ðrÞ; ~Z ≡

Z∞

0

dr′  e−β ~Vðr′Þ: [S12]

Because under this approximation ~τ0ðr;FÞ is independent of
the starting point r, we will drop the r dependence, and sim-
plify the notation by defining the approximate bond lifetime
τðFÞ≡~τ0ðr;FÞ.
To obtain an analytical expression for τ(F), we need to eval-

uate the integral for ~Z in Eq. S12 for ~PðrÞ. Because this cannot

Chakrabarti et al. www.pnas.org/cgi/content/short/1405384111 1 of 3

www.pnas.org/cgi/content/short/1405384111


be done exactly, we will approximate ~Z as a Gaussian integral by
expanding ~V ðrÞ around r = rm to second order, leading to

~Z≈

 
β ~V ″ðrmÞ

2π

!−1
e−β ~V ðrmÞ: [S13]

To find closed-form expressions for rm and the ~V ″ðrmÞ, we
note that the location of the minimum of ~V ðrÞ and the curvature
at the minimum approximately coincide with those of the simpler
potential ~V sðrÞ,

~V sðrÞ= 1
2
ðk0 + 2k1Þðr− r0Þ2 −Fr− 2kbT log  r; [S14]

which comes from substituting cos(θ) → 1 in V(r, θ) in the in-
tegral defining ~V ðrÞ (Eq. S9). Fig. S1 illustrates ~V ðrÞ versus ~V sðrÞ
at two different Fs. Obtaining the location and curvature of the
minimum using the simple potential ~V sðrÞ is justified because of
the following observations: The exact location of the minimum
rm, is always very close to r0. At zero external force or forces very
close to zero, V(r, θ) is approximately the same as the simpler
potential obtained by setting cos(θ) → 1 in V(r, θ), in regions
r ∼ r0. Hence ~V ðrÞ and ~V sðrÞ will be similar around r = r0. At
larger forces, V(r, θ) and its simpler version are approximately
the same only around r ∼ r0 and θ ∼ 0. However, because V(r, θ)
is minimized around θ ∼ 0 in regions around r0, the dominant
contribution to the integral in Eq. S9 for r values around r0 comes
from θ ∼ 0. Hence once again the simpler form of V(r, θ) can
be used, leading to similar ~V ðrÞ and ~V sðrÞ around r = r0. The
potential ~V sðrÞ reaches its minimum at

rms = 4
�
−βðF + ðk0 + 2k1Þr0Þ

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8βðk0 + 2k1Þ+ β2ðF + ðk0 + 2k1Þr0Þ2

q �−1
; [S15]

where the curvature is given by

~V ″s ðrmsÞ= k0 + 2k1+
2

βr2ms
: [S16]

The complete approximation for ~Z involves substituting Eqs. S15
and S16 for rm and ~V ″ðrmÞ in Eq. S13,

~Z≈

 
β ~V ″s ðrmsÞ

2π

!−1

e−β ~V ðrmsÞ: [S17]

Plugging the definition of ~V ðrÞ from Eq. S9 and ~Z from Eq.
S17 into Eq. S12 for ~PðrÞ, we can now analytically approximate
τðFÞ= ½D~P′ðbÞ�−1. The resulting expression simplifies for large k0,
corresponding to large energy barriers for bond rupture, yielding
the final form for the bond lifetime (Eq. 2 of the main text),

τðFÞ≈
ffiffiffi
π

p
  r0ðE1 − 2Fðd+ r0ÞÞeβðE0+dFÞ�e2βFr0 − 1

�
4DðβE0Þ3=2Fð1+ r0=dÞ2ð1− eβð2Fðd+r0Þ−E1ÞÞ

; [S18]

where E0 = k0d
2/2 and E1 = k1d

2.

Brownian Dynamics Simulations
To check the accuracy of the theoretical prediction for the life-
time τ(F) in Eq. S18, we performed overdamped Brownian dy-
namics simulations (2) for a test particle of radius r0 diffusing in
the potential U given in Eq. S2 using D = kBT/(6πηr0), where η =
0.89 mPa·s is the viscosity of water at T = 298 K. We chose the

time step for numerical integration to be about 2× 10−6r20=D.
The trajectories were started with the bead at rmin, the minimum
of the potential U, and stopped when the bead reached the
rupture boundary at r = b for the first time. Statistics were ob-
tained from ∼150−300 trajectories, depending on the value of
force, and error bars on the simulated data were estimated by the
jackknife method (3). Fig. S2 shows a comparison of the nu-
merical results to the analytical formula of Eq. S18 for param-
eters corresponding to the rigor actomyosin experimental system
(Table 1). The excellent agreement validates the approximations
used to derive Eq. S18.

Fitting to Experimental Data
We fitted Eq. S18 for τ(F) to experimental data by the standard
method of minimizing χ2-values, which is equivalent to maximizing
a log-likelihood function, with the assumption that errors in the
mean lifetime data are Gaussian-distributed. For the fits in Fig. 3 C
and D and Fig. 4, the SD for each lifetime was obtained from the
error bars given in the corresponding experimental studies. How-
ever, because error bars were not provided for the lifetime data in
Fig. 3 A and B, we derived error bars from the scatter in the three
reported estimates for τ(F): average lifetimes, SD of the lifetimes,
and −1/slope in the logarithmic plot of the number of events with
lifetime t or greater versus t. For exponentially distributed lifetimes
(the case in all of the experimental systems under consideration),
these three quantities should be equal to τ(F) up to deviations due
to sampling errors. After fitting, the uncertainties in the parameters
E0, E1, d, and r0 listed in Table 1 were obtained from the diagonal
elements of the best-fit covariance matrix.
For the simultaneous fitting of L-selectin mutation data (4) in

Fig. 3 C and D, we used the following procedure to determine
the minimal perturbation to the parameters of the system that
produces the observed shift in the τ(F) curves. The data alone
suggest that not all of the model parameters are relevant to the
mutation. The experimental τ(F) curves for the wild type (WT)
and the mutant in Fig. 3 C and D show that the decay in τ(F) at
large F is similar. Because the decay is controlled by the pa-
rameter d, we assume that the value of d for the WT and the
mutant is the same. This leaves three parameters, E0, E1, r0, that
could potentially be altered by the mutation, although it is pos-
sible that only a subset of these is sufficient to explain the shift.
We carried out simultaneous fitting of the model to the WT and
mutant τ(F) curves for each ligand, under eight different hy-
potheses, corresponding to different subsets of the three pa-
rameters varying under mutation. For a given ligand, the mutant
and WT share all parameters except the subset that is allowed
to vary (first column of Table S1). Between curves for dif-
ferent ligands, all parameters are distinct. The table shows the
resulting χ2-statistic (the total χ2 for the data sets involving both
ligands). The lowest χ2 is achieved for hypothesis 3, where all
three parameters are allowed to vary. However, this could be the
result of overfitting, because hypothesis 3 also has the largest
number of free parameters. A better way to rank the hypotheses
is through the corrected Akaike information criterion (AICc),

AICc = χ2 + 2p+
2pðp+ 1Þ
n− p− 1

; [S19]

where n is the number of data points and p the number of free
parameters (5). The AICc penalizes overfitting due to an excessive
number of parameters, and has a natural probabilistic interpreta-
tion: if two model fits have AICc values of a1 and a2, respectively,
with a1 < a2, then model 2 has a likelihood exp((a1 − a2)/2) of
being the true interpretation of the data, relative to model 1. From
AICc values listed in Table S1, we see that the most likely hy-
pothesis is 1, where E0 and E1 are allowed to vary. Hypothesis 2
(E1 and r0 varying) is a close competitor (78% as likely as 1), and
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the remaining ones are increasingly improbable (hypothesis 3 is
only 3% as likely as 1). As argued in the main text, hypothesis 1
also has a very reasonable physical interpretation, with the mu-
tation causing a single bond to switch between the sets that
contribute to E1 and E0. Hypothesis 2, which involves the muta-

tion decreasing E1 and increasing the lever arm distance r0, is
more difficult to explain in physical terms, but cannot be com-
pletely ruled out based on fitting alone. The fit results for hy-
pothesis 1 are shown in Fig. 3 C and D, and the parameters are
listed in Table 1.
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Fig. S1. Comparison of the potentials ~VðrÞ and ~V sðrÞ at two different forces: (A) F = 1 pN; (B) F = 50 pN. The energy scales are aligned such that the minima of
both potentials occur at 0 kBT. The parameters are k0 = 147.2 kBT/nm

2, k1 = 15.6 kBT/nm
2, and r0 = 3.0 nm.

Fig. S2. Approximate theoretical bond lifetime τ(F) (Eq. S18, solid curve) versus the numerical results of Brownian dynamics simulation (circles), for parameters
E0 = 18.4 kBT, E1 = 3.9 kBT, d = 0.5 nm, and r0 = 2.2 nm.

Table S1. Simultaneous fitting of the L-selectin mutation
data from ref. 4

Varying subset χ2 AICc

1: E0, E1 32.2 71.8
2: E1, r0 32.7 72.3
3: E0, E1, r0 27.3 78.7
4: E0, r0 50.9 90.5
5: r0 65.9 95.9
6: E0 90.8 120.8
7: E1 154.0 184.0
8: None 224.1 246.0

The first column lists eight hypotheses, corresponding to different subsets
of parameters that are allowed to vary between the fits to the wild-type and
mutant data sets. χ2 is a measure of goodness of fit. The hypotheses are
ordered by increasing AICc. The lowest values of χ2 and AICc are in bold.
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