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We study a quenched disordered d=3 tJ Hamiltonian with static vacancies as a model of nonmagnetic
impurities in high-Tc materials. Using a renormalization-group approach, we calculate the evolution of the
finite-temperature phase diagram with impurity concentration p and find several features with close experi-
mental parallels: Away from half filling, we see the rapid destruction of a spin-singlet phase �analogous to the
superconducting phase in cuprates� which is eliminated for p�0.05; in the same region for these dilute
impurity concentrations, we observe an enhancement of antiferromagnetism. The antiferromagnetic phase near
half filling is robust against impurity addition and disappears only for p�0.40.
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The electronic properties and phase diagram of high-Tc
materials are particularly sensitive to impurities––substi-
tution of 3d transition elements �Zn, Ni, Co, and Fe� or other
metals �Al and Ga�, for the Cu atoms of the CuO2 planes.1

The interplay between disorder, strong antiferromagnetic
correlations in the parent compound and doped charge carri-
ers offers a window onto the nature of both the supercon-
ducting phase and the normal state above Tc. Doping by
nonmagnetic �S=0� Zn ions provides one representative ex-
ample: the most pronounced effect is the rapid destruction of
the superconducting phase.1,2 In yttrium barium copper oxide
�YBCO�, the transition temperature is reduced at a rate of
�15 K /at % of impurities so that it takes Zn concentrations
of only about 6% to entirely eliminate superconductivity.2

This is in contrast to the antiferromagnetic phase at half fill-
ing, which requires a far larger Zn concentration �about 40%
in lanthanum strontium copper oxide �LSCO� �Ref. 3�� to
completely suppress. The effects in the metallic region above
Tc are equally surprising: nuclear-magnetic-resonance ex-
periments have found that Zn atoms induce local magnetic
moments at nearest-neighbor Cu sites4 and enhance antifer-
romagnetic correlations for several lattice spacings around
the impurity.5,6 In lightly hole-doped LSCO, there have been
observations of an initial increase in the Néel temperature
with Zn addition and even impurity-induced reappearance of
long-range antiferromagnetic order.7,8

In this work we model the effects of nonmagnetic impu-
rities in high-Tc materials through a d=3 tJ Hamiltonian
with quenched disorder in the form of static vacancies.
Through a renormalization-group �RG� approach, we obtain
the evolution of the global temperature vs chemical-potential
phase diagram with disorder. Our results capture, in a single
microscopic model, some of the major qualitative features of
impurity doping in real materials: the rapid suppression of a
spin-singlet phase, analogous to the superconducting phase
in cuprates, the gradual reduction of the antiferromagnetic
phase near half filling, and the enhancement of antiferromag-
netism away from half filling for small impurity concentra-
tions.

We consider the quenched disordered tJ model on a

d-dimensional hypercubic lattice, −�H=��ij��−�H0�i , j��
+�i�i

impni, where −�H0�i , j�=−t���ci�
† cj�+cj�

† ci��−J�Si ·S j
−ninj /4�+��ni+nj� is the standard tJ model pair Hamil-
tonian. The static impurities at each site i occur with prob-
ability p via �i

imp=−� and do not occur with probability 1
− p via �i

imp=0.
To formulate an RG transformation for this system, we

use the d=1 Suzuki-Takano decimation,9–19 generalized to
d�1 through the Migdal-Kadanoff method.20,21 This tech-
nique, adapted for quenched random-bond disorder, has re-
cently elucidated the phase diagrams of the quantum Heisen-
berg spin glass in various spatial dimensions.18 In our case
the rescaling for the d=1 system �with sites i=1,2 ,3 , . . .� is

Trevene
−�H = Trevene

�i�−�H0�i,i+1�+�i
impni�

= Trevene
�i

even�−�H0�i−1,i�+�i
impni−�H0�i,i+1��+�i

odd�i
impni

	
�
i

even

Tri e−�H0�i−1,i�+�i
impni−�H0�i,i+1��e�i

odd�i
impni

= 
�
i

even

e−��H0��i−1,i+1��e�i
odd�i

impni

	 e�i
even�−��H0��i−1,i+1�+�i−1

impni−1� = e−��H�, �1�

where the traces and sums are over even- or odd-numbered
sites i and −��H� is the renormalized Hamiltonian. Anticom-
mutation rules are correctly accounted for within segments
of three consecutive sites, at all successive length scales as
the RG transformation is iterated.

The algebraic content of the RG transformation is con-
tained in the second and third lines of Eq. �1�, yielding the
renormalized pair Hamiltonian −��H0��i� , j�� through the
relation: exp�−��H0��i� , j���=Trk exp�−�H0�i� ,k�+�k

impnk
−�H0�k , j���. Under the transformation the original system is
mapped onto one with a more general form of the pair
Hamiltonian, −�H0�i , j�=−tij���ci�

† cj�+cj�
† ci��−JijSi ·S j

+Vijninj +�ij�ni+nj�+�ij�ni−nj�+Gij, where the interaction
constants Kij �tij ,Jij ,Vij ,�ij ,�ij� are nonuniform and dis-
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tributed with a joint quenched probability distribution
P�Kij�. This generalized form of the Hamiltonian remains
closed under further RG transformations. Through the rela-
tion above, we can write the interaction constants Ki�j�

� of the
renormalized pair Hamiltonian −��H0��i� , j�� as a function of
the interaction constants Ki�,k and Kk,j� of two consecutive
nearest-neighbor pairs in the unrenormalized system, Ki�j�

�

=R�Ki�k ,Kkj��. This function R comes in two varieties de-
pending on whether or not there is an impurity at site k,
which we shall denote as R0 and Rimp, respectively. Starting
with a system with quenched probability distribution P�Kij�,
the distribution P��Ki�j�

� � of the renormalized system is given
by the decimation convolution:22

P��Ki�j�
� � =� dKi�kdKkj�P�Ki�k�P�Kkj��

	�p
�Ki�j�
� − Rimp�Ki�k,Kkj���

+ �1 − p�
�Ki�j�
� − R0�Ki�k,Kkj���� .

The initial condition for the RG flow is the distribution cor-
responding to the original system, P0�Kij�=
�Kij −K0�,
where K0= �t ,J ,−J /4,� ,0�.

The RG transformation is extended to d�1 through the
Migdal-Kadanoff20,21 procedure. While approximate for hy-
percubic lattices, the recursion relations generated by this
procedure are exact on hierarchical lattices23–25 and we shall
use this correspondence to describe the RG transformation
for the case d=3 with length rescaling factor b=2. The as-
sociated hierarchical lattice is shown in Fig. 1. Its construc-
tion proceeds by taking each bond in the lattice, replacing it
by the connected cluster of bonds in the middle of Fig. 1, and
repeating this step an infinite number of times. The RG trans-
formation consists of reversing this construction process by
taking every such cluster of bonds, decimating over the de-
grees of freedom at the four inner sites of the cluster, which
yields a renormalized interaction between the two edge sites
of the cluster. Denoting these edge sites as i� and j�, and the
four inner sites as k1 , . . . ,k4, this decimation can be ex-
pressed as Ki�j�=�n=1

4 R�Ki�kn
,Kknj��. Just as in the d=1

case, this decimation will give, after a single RG transforma-
tion, a system with a nonuniform quenched distribution of
interaction constants. We can calculate the quenched prob-
ability distribution P��Ki�j�� of the renormalized system
through a series of pairwise convolutions, consisting of the
decimation convolution defined above for interactions in se-
ries, and a “bond-moving” convolution for interactions in
parallel, using the function Rbm�KA ,KB�=KA+KB. In order
to numerically implement the convolution, the probability

distributions are represented by histograms, where each his-
togram is a set of interaction constants �t ,J ,V ,� ,�� and an
associated probability. Since the number of histograms that
constitute the probability distribution increases rapidly with
each RG iteration, a binning procedure is used.26 Further-
more since evaluation of the R functions is computationally
expensive and most of the weight of the probability distribu-
tions is carried by a fraction of the histograms, we have
added an additional step before the decimation convolution
to increase efficiency: the histograms with the 100 largest
probabilities are left unchanged while the others are col-
lapsed into a single histogram in a way that preserves the
average and standard deviation of the quenched distribution.
Thus we evaluate 104 local decimations at each RG transfor-
mation.

All thermodynamic properties of the system, in particular
the finite-temperature phase diagram, can be determined
from analyzing the RG flows. In the pure �p=0� case, the
transformation described above reduces to the recursion re-
lations derived for the d=3 tJ model in earlier studies,11,12

and yields the phase diagram shown in Figs. 2�a� and 2�b�
for J / t=0.444. Here we summarize the observed phases
�for details, consult Refs. 11 and 12�: near half filling
�� /J→� , �ni�→1�, there is a transition with decreasing
temperature from a densely filled disordered phase �D� to
long-range antiferromagnetic order �AF�. This AF phase per-
sists away from half filling down to � /J�1.6, or 5% hole
doping. For very large hole dopings ��37%�, we go over

FIG. 1. Hierarchical lattice on which the d=3 and b=2 Migdal-
Kadanoff recursion relations are exact.
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FIG. 2. Pure system �p=0� phase diagram of the isotropic
d=3 tJ model �Refs. 11 and 12� for J / t=0.444: in terms of �a�
chemical potential � /J vs temperature 1 / t and �b� electron density
�ni� vs temperature 1 / t. Panels �c� and �d� show the analogous
phase diagrams for the uniaxially anisotropic case �Ref. 17� with
tz / txy =0.3, Jz /Jxy = �tz / txy�2=0.09, and Jxy / txy =0.444. In both cases,
antiferromagnetic �AF�, dense disordered �D�, dilute disordered �d�,
and � phases are seen. The solid lines represent second-order phase
transitions while the dotted lines are first-order phase transitions
�with the unmarked areas inside corresponding to coexistence re-
gions of the two phases at either side�. Dashed lines are not phase
transitions but disorder lines between the dilute disordered and
dense disordered phases.
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into a dilute disordered phase �d� with narrow first-order co-
existence regions between the d and D phases. At intermedi-
ate hole dopings of 33%–37%, a phase ��� is found at low
temperatures, flanked by an intricate lamellar structure of AF
islands.

The � phase is characterized by the formation of nearest-
neighbor spin-singlet pairs, as can be understood from
correlation functions calculated using the RG flows. Let us
define a singlet pair-pair correlation function Tij,kl

sing

= ��ij
sing†

�kl
sing+�kl

sing†
�ij

sing�, where �ij
sing= 1

�2
�ci↓cj↑−ci↑cj↓�, and

the analogous triplet correlation function Tij,kl
trip in terms of

�ij
trip=ci↑cj↑+ 1

�2
�ci↓cj↑+ci↑cj↓�+ci↓cj↓. For clusters of three

consecutive sites i, j, and k in the lattice, Fig. 3 shows the
on-site correlations Tij,ij

sing and Tij,ij
trip , and nearest-neighbor cor-

relations Tij,jk
sing and Tij,jk

trip . In Figs. 3�a� and 3�b�, we see a
constant-temperature slice at 1 / t=0.10 as � /J is varied.
There is a broad region of chemical potentials away from
half filling, centered at the � phase, where both the on-site
and nearest-neighbor singlet correlations are strong, in con-
trast to the triplet correlations which are suppressed in the
same region. We see similar behavior in Fig. 3�c�, where the
correlations are plotted as a function of temperature 1 / t at a
constant electron density �ni�=0.67. As we decrease the tem-
perature approaching the transition into the � phase, there is
a significant increase in the singlet correlations and rapid
decay of the triplet correlations. Spin-singlet liquids, i.e., the
hole-doped resonating valence bond �RVB� state, have fea-
tured prominently in theories of high-Tc superconductivity
�for a review, see Ref. 27�. As we shall see below, the be-
havior of the � phase under impurity doping is analogous to
that of the superconducting phase in high-Tc materials.

Although in this study we focus on the isotropic d=3
model, the general features of the phase diagram discussed

above persist in the case of spatial anisotropy with interac-
tions �txy ,Jxy� along the xy planes and weaker interactions
�tz ,Jz� along the z direction. Through a similar RG approach
using the more complicated hierarchical lattice associated
with a uniaxially anisotropic cubic lattice,28 it was found in
particular that the � phase continues to exist in roughly the
same doping range even for weak interplanar coupling.17 A
representative phase diagram with tz / txy =0.3, Jz /Jxy
= �tz / txy�2=0.09, and Jxy / txy =0.444 is shown in Figs. 2�c�
and 2�d�. Thus the � phase may be relevant even in the
strongly anisotropic regime important for high-Tc materials,
which are characterized by weakly interacting CuO2 planes.

In Fig. 4 we show the evolution of our calculated phase
diagram with increasing impurity concentration p. The �
phase is rapidly suppressed for p=0.01–0.04 �Figs.
4�a�–4�d�� and is no longer present by p=0.05. The rate at
which the � phase disappears is comparable to the reduction
of Tc with nonmagnetic impurities in cuprates where typi-
cally concentrations �2%−6% �depending on dopant� are
enough to eliminate superconductivity.1,2 As the area of the �
phase recedes for these small impurity concentrations, the
region it formerly occupied is replaced by a complex lamel-
lar structure of the AF phase. We can understand this en-

FIG. 3. On-site and nearest-neighbor singlet and triplet pair-pair
correlations for the d=3 tJ model with p=0 and J / t=0.444. In �a�
and �b� the correlations are plotted as a function of chemical poten-
tial � /J at constant temperature 1 / t=0.10. In �c� they are plotted as
a function of temperature 1 / t at the constant electron density
�ni�=0.67. The corresponding phases are indicated near the top of
each plot, with solid and dotted vertical lines marking second-order
and first-order phase boundaries, respectively.

FIG. 4. Calculated phase diagrams of the d=3 tJ model with
J / t=0.444 for various values of the impurity concentration p, plot-
ted in terms of temperature 1 / t vs chemical potential � /J. The
phases depicted in the figures are: dilute disordered �d�, dense dis-
ordered �D�, antiferromagnetic �AF�, and �. The inset shows AF
transition temperatures for the near-half-filled system �� /J=100� as
a function of p.
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hancement of antiferromagnetism through an RVB-like pic-
ture of the � phase:29 In the pure case, the nearest-neighbor
singlets resonate in all possible arrangements along the
bonds. When an impurity is added, some of these arrange-
ments are “pruned” because the bonds adjacent to the impu-
rity can no longer accommodate singlets. This inhibition of
singlet fluctuations leads to enhanced antiferromagnetic cor-
relations around the vacancy. Such local AF enhancement
near dilute nonmagnetic impurities has been observed
through NMR and nuclear quadrupole resonance �NQR�
studies on Zn-doped YBCO,5,30 and supported theoretically
by finite-cluster studies of the d=2 Heisenberg31 and tJ
�Refs. 32 and 33� models. More dramatically, in lightly hole-
doped La2−xSrxCu1−zZnzO4 �with x=0.017�, the Néel tem-
perature actually increases with the addition of Zn up to z
=0.05 before turning downwards again at higher z.7 A simi-
lar, although smaller, effect has been found even at larger
hole dopings of x=0.115 and 0.13 with the TN increasing up
to z=0.0075.8 In the case of x=0.13, there is even no long-
range antiferromagnetic order for the Cu spins in the Zn-free
compound; it appears for z�0.0025. This reappearance of
long-range AF order upon addition of impurities, at small
hole dopings away from half filling where it does not exist in
the pure case, was replicated in the d=2 tJ model using a
self-consistent diagrammatic approach34 and in the d=2
Hubbard model with the dynamical cluster approximation.35

Thus the enhancement of the AF phase away from half fill-
ing, which we find at small impurity concentrations, is con-
sistent with previous experimental and theoretical indica-
tions.

On the other hand, for larger concentrations of impurities,
the dilution of the spins in the lattice becomes the dominant
effect and eventually all long-range magnetic order is de-

stroyed in the system. We see this in Figs. 4�e�–4�h�, show-
ing phase diagrams for p=0.10–0.40 and in the inset that
plots the AF transition temperature as a function of p near
half filling �� /J=100�. In contrast to the � phase, the AF
phase around half filling is robust against impurity addition
and only disappears for p�0.40. Qualitatively similar be-
havior has been seen in the half-filled compound
La2Cu1−zZnzO4, where Zn concentrations of z�0.4 are re-
quired to reduce the Néel temperature to zero,3 much larger
than those needed to eliminate superconductivity in the hole-
doped material.

To summarize, we have applied an RG approach to the
quenched disordered d=3 tJ model and found the evolution
of the phase diagram as a function of impurity concentration.
The spin-singlet phase away from half filling is quickly de-
stroyed through the addition of small quantities of static va-
cancies while antiferromagnetism in the same region is en-
hanced. The antiferromagnetic phase near half filling is less
sensitive to impurity addition and completely disappears
only at larger impurity concentration. These results all have
close parallels in experimental results from cuprates. The RG
method described here for dealing with quenched disorder in
the tJ Hamiltonian could be generalized to more complex
systems: for example, the disordered Hubbard model where
the double occupation of sites is allowed through a finite
electron-electron repulsion. The role of electron correlations
and disorder in this system has led to interesting phase dia-
gram predictions,36–38 which could be further explored with
RG techniques.
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