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For a variety of quenched random spin systems on an Apollonian network, including ferromagnetic and
antiferromagnetic bond percolation and the Ising spin glass, we find the persistence of ordered phases up to
infinite temperature over the entire range of disorder. We develop a renormalization-group technique that yields
highly detailed information, including the exact distributions of local magnetizations and local spin-glass order
parameters, which turn out to exhibit, as function of temperature, complex and distinctive tulip patterns.
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I. INTRODUCTION

Although their structure dates back to ancient Greek
mathematics, Apollonian networks �1,2� have seen a recent
surge of interest as a simple and elegant model that incorpo-
rates some of the key features identified in real-world net-
works: a scale-free degree distribution, the small-world ef-
fect, and a high clustering coefficient. As such, they have
become a versatile tool for understanding the effects of com-
plex topologies in interacting systems: applications include
percolation and epidemic spreading �1,3�, magnetic systems
�1,4�, mechanisms of network growth �5�, avalanches in
sandpile models �6�, neural networks �7�, and even quantum
behaviors like coherent exciton transport �8� and correlated
electron models �9,10�. The latter was inspired by the devel-
opment of synthetic, nanoscale, and nonbranched fractal
polymers �11�, which raises the possibility that the unique
properties of scale-free structures like Apollonian networks
may be harnessed for technological applications.

In this study, we focus on an intriguing aspect of
these networks: their ordering resilience in the presence
of an imposed quenched disorder. For an Ising model
with a variety of random-bond distributions—ferromagnetic/
antiferromagnetic percolation and spin glass—we find that
ordered phases persist up to infinite temperature, for every
case except the pure antiferromagnetic system �where the
geometrical frustration of the network leads to paramagnet-
ism�. The self-similar nature of the Apollonian network al-
lows the use of exact renormalization-group �RG� techniques
to calculate the phase diagram structure, even in the presence
of quenched randomness. While there have been many nu-
merical RG studies of spin glasses on fractal lattices, we
have gone further, developing an iterative procedure based
on the local recursion matrix that allows us to calculate ex-
actly the complete distribution of the local magnetization and
spin-glass order parameters, for the full range of bond prob-
abilities and temperatures. The resulting local-order dia-
grams �Fig. 1� show an intricate structure as temperature is
lowered, never before observed in such detail for a disor-

dered spin system. Apollonian networks can be embedded in
a Euclidean plane without any edge crossings �1,2�. This
makes spin systems on such networks potentially physically
realizable, for example, in nanostructures formed from dense
polydisperse packings of magnetic grains �1,4�. Apollonian
packings have also been used in the study of smectic liquid
crystals �12�.

II. NETWORK STRUCTURE

The construction of the Apollonian network is depicted in
Fig. 2�a�. At each step, a new site is added to the center of
every triangle in the network and connected to the surround-
ing vertices. In the limit of infinite size, the geometrical char-
acteristics of the network can be summarized as follows
�1,2,13�: P�k� being the probability that a site has degree
k, the cumulative degree distribution is Pcum�k�=�k�=k

� P�k�
�k1−� for large k, with the scale-free exponent �=1
+ln 3 / ln 2�2.585. Due to the compact network structure,

the average shortest-path length l̄ between any two points

scales as in the small-world effect, l̄� ln N, as shown in �13�
using the exact recursive method of �14�. As is typical in
small-world networks, the average clustering coefficient is
large �C�0.828�, measuring the ratio of the connections
among the nearest neighbors of a site and the maximum
possible number of such connections k�k+1� /2, where k is
the degree of the site. In all these respects, the topological
properties of the Apollonian network are comparable to those
observed in empirical complex networks that are simulta-
neously scale-free and small world �15�.

We study an Ising Hamiltonian on the network, −�H
=��ij	Jijsisj, where si= �1, �=1 /kBT, the sum �ij	 is over
nearest neighbors, and the bond strengths Jij are distributed
with a quenched random probability distribution P�Jij�. We
consider two types of distributions described by bond prob-
ability p: �i� the percolation case, where P�Jij�= p��Jij −J�
+ �1− p���Jij�, for both ferromagnetic �F� J�0 and antiferro-
magnetic �AF� J�0 interactions; �ii� the �J spin-glass �SG�
case, where P�Jij�= p��Jij +J�+ �1− p���Jij −J� with J�0.
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III. EXACT RENORMALIZATION-GROUP
TRANSFORMATION

The self-similar structure of the Apollonian network
allows us to formulate an exact RG transformation. For
−�H�
Jij��, the Hamiltonian for a particular configuration of
interactions on the nth-generation network �i.e., the lattice
after n construction steps�, the RG mapping yields a Hamil-
tonian −��H��
Jij� �� with a renormalized set of interactions

Jij� � on the �n−1�th-generation network, preserving the par-
tition function. The mapping is carried out through a star-
triangle transformation �16�, tracing over the spins at sites
added at the nth step. This is shown for one plaquette in Fig.
2�b�, with the decimated spin labeled �. The trace over �

produces interactions J̃12, J̃13, J̃23, between the edge sites of
the triangle, which are functions of the original interactions

J1 ,J2 ,J3 of the star, J̃12= 1
4 ln


cosh�2J1+2J2�+cosh�2J3�
cosh�2J1−2J2�+cosh�2J3� � and its cy-

clic permutations. In the context of the whole network, the

mapping works as shown in Fig. 2�c�. The J̃ij interactions
�inner to each triangle� are added to the original interactions
Jij of the �n−1�th-generation network �in-between triangles�
to give the renormalized interactions Jij� . Thus, in the bulk

each original interaction gets J̃ij contributions from its two
adjoining plaquettes.

In order to implement this RG transformation for the sys-
tem in the thermodynamic limit, we focus on the probability

distribution of triplets Q�
J̃ij , J̃jk , J̃ik�� generated by the star-
triangle transformation. As we iterate the RG mapping, this
distribution Q changes, and we can extract thermodynamic
information from the resulting flows. To keep track of Q at
each step, we adapt a numerical procedure developed by No-
bre �17� for RG transformations of spin glasses on hierarchi-
cal lattices. This method has been shown to give numerically
accurate results for phase diagrams �18�, agreeing with more
complicated binning techniques used to directly evaluate the
RG flows of interaction distributions �14�. We represent the
distribution Q by a pool of large size M, where each element
in the pool consists of a triplet of real numbers. To generate
the initial pool Q�1�, we repeat the following M times: �i�
choose three random numbers J1 ,J2 ,J3 with the probability
P�J�; �ii� perform the star-triangle transformation of Fig.

2�b�, yielding a triplet 
J̃12, J̃23, J̃13� which is placed in the
pool. Each subsequent RG transformation creates a new pool
Q�i� from the previous pool Q�i−1� in the following manner,
again repeating the same procedure M times to preserve the
size of the pool: �i� randomly choose three triplets from
Q�i−1�; �ii� randomly arrange these three triplets like the three
triangles in the second step of Fig. 2�c�, together with the
three middle bonds, chosen randomly with the probability
P�J�; and �iii� decimate the center spin to yield a renormal-
ized triplet, namely, the inner bonds in the third step of Fig.
2�c�, which is placed in pool Q�i�. As M→�, the pools
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FIG. 1. �Color� Local-order-parameter tulips: probability distributions of local magnetization �left panels� and spin-glass �right panels�
order parameters of the interior sites on an Apollonian network with Ising spin-glass interactions, as a function of temperature, for three
different antiferromagnetic bond concentrations p.
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FIG. 2. �Color online� �a� Construction of an Apollonian net-
work. �b� Star-triangle transformation. �c� Two successive RG trans-
formations of an Apollonian network.
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mimic the exact renormalized distributions of triplets in the
thermodynamic limit. For the present work, we found that
M =106 was sufficiently large to make finite-ensemble effects
negligible. From the behaviors of the Q�i� in the limit of large
i, we can identify the phase structure of the system. Specifi-

cally, looking at the average J̄�i� and standard deviation �J
�i�

of the 3M bond strengths in pool Q�i�, we can distinguish

three limiting behaviors as i→�: �i� a F sink, where J̄�i�

→�, �J
�i�→�, and �J

�i� / J̄�i�→0; �ii� a SG sink, where J̄�i�

→�, �J
�i�→�, and J̄�i� /�J

�i�→0; and �iii� a paramagnetic �P�
sink, where J̄�i�→0, �J

�i�→0. Furthermore, the RG evolution
of the fraction of frustrated triangles is different in the
ferromagnetic and spin-glass phases, respectively going to
0 and 0.5.

IV. CALCULATION OF LOCAL MAGNETIZATIONS
AND LOCAL SG ORDER PARAMETERS

Moreover, the numerical procedure described above is not
limited to just the distribution of renormalized interactions
Q. It can be extended to determine additional thermodynamic
details, in particular, the distribution of local magnetizations
and local SG order parameters. Let us consider the magneti-
zation m� at a site � in the original lattice. For simplicity, let
� be one of the sites generated at the last construction step.
We shall denote these as “interior sites,” and they constitute
2/3 of the total lattice in the limit of large n. Adding a local
magnetic field H�, we can write m�=� ln Z /�H� �H�=0, where
Z is the partition function. The star-triangle transformation
with H� produces additional interactions in the renormalized
triangle on the right-hand side of Fig. 2�b�: three local fields
H1s1 ,H2s2 ,H3s3 and a three-site term Ks1s2s3, where Hi and
K are functions of the Jij and H�. With these interactions, the
RG mapping is closed upon further iteration, so there will be
a set of parameters K�i�

H1

�i� ,H2
�i� ,H3

�i� ,K�i�� after the ith RG
step associated with the triangle that originally contained
spin �. Using the chain rule, m� can be expressed �19,20� in
terms of local recursion matrices T over the i steps,

m� = ��i�T
T�i�T�i−1�

¯ T�2�V�1�, �1�

where 	

�i�=� ln Z /�K


�i�, T�

�i� =�K�

�i� /�K

�i−1�, V


�1�=�K

�1� /�H�,

and K

�i� are the components of K�i�. All these quantities are

evaluated in the RG subspace with initial condition H�=0
�i.e., where K


�i�=0 for all i�, which makes them functions
only of the Jij configuration at the previous step. In the ther-
modynamic limit, as a corner boundary condition, we calcu-
late ��i� over the up-magnetized configurations of the three
original corner spins of the network. As the RG transform is
iterated, each triplet in the pool Q�1� has a corresponding
vector T�i�

¯T�2�V�1�, which can be contracted with ��i� cal-
culated from Q�i� to obtain a pool of m� using Eq. �1�. For
sufficiently large i and M, the resulting pool converges to the
exact distribution of local magnetizations in the thermody-
namic limit. The averages of m� and q�
m�

2 over this dis-
tribution, respectively yield the magnetization m and SG or-
der parameter q for the interior sites.

V. RESULTS

We focus first on the F and AF percolation cases. For F
percolation, the system is ferromagnetically ordered at all
finite temperatures for any p�0, directly related to the exis-
tence of a giant connected component in the network at all
nonzero bond probabilities �1�. In contrast, one might expect
macroscopic order in the system to be inhibited in the AF
case since AF bonds are frustrated on the triangular
plaquettes in the network. Indeed, in the case of p=1,
namely, for a pure AF system, frustration leads to a paramag-
netic phase at all temperatures. However, as soon as even a
tiny fraction of AF bonds is removed, namely, for any 0
� p�1, we find an SG phase at all temperatures, an inter-
esting example of a glassy phase which is completely imper-
vious to thermal excitations. The SG phase appears even
when weaker forms of disorder are added to the pure AF
system, such as simply attenuating a fraction of the bonds.
Consider the range of models described by the bond distri-
bution P�Jij�= p��Jij −J�+ �1− p���Jij −cJ� where J�0 and
0�c�1. Here, c=0 corresponds to the AF percolation case
described above, but it turns out that any c�1 gives the
same phase diagram structure, namely, a SG phase of infinite
extent for all 0� p�1 and paramagnetism at p=1.

We now turn to the spin-glass system: The system com-
posed of antiferromagnetic bonds, under infinitesimal doping
by ferromagnetic bonds, produces a spin-glass phase via a
jump, namely, a first-order phase transition at p=1. For a
sufficient quantity of ferromagnetic doping, a first-order tran-
sition occurs to the ferromagnetic phase, as can be seen in
the phase diagram in Fig. 3. On both sides of the transition
line, the ordered phases persist to infinite temperature 1 /J,
and the boundary itself asymptotically approaches a vertical
line at p=0.5 as 1 /J→�. The first-order nature of the
ferromagnetic-spin-glass phase transition, to our knowledge
not seen in other systems, is evident from the magnetization
and SG order parameter plotted in Fig. 4, which indeed show
discontinuities crossing the boundary. �At the highest tem-
perature depicted, 1 /J=10.0, the discontinuities exist but are
too small to be seen on the scale of the figure.� Figure 4 also
reveals a curious aspect of the spin-glass order on the Apol-
lonian network. Unlike a conventional spin-glass phase, the
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FIG. 3. �Color online� Phase diagram of the Ising spin glass on
an Apollonian network, in temperature 1 /J versus antiferromagnetic
bond concentration p. The boundary between the ferromagnetic and
spin-glass phases is first order. The paramagnetic phase appears
with a first-order phase transition at p=1.
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magnetization m is generally nonzero. With the above-
mentioned boundary condition on the three corner spins, m
�0 for p
0.5. The negative m at large p is understood from
the influence of the corner spins, which except for the central
spin have the highest degree in the network. In an environ-
ment with mostly antiferromagnetic bonds, an up orientation
for the corner spins will yield a negative magnetization of
the interior sites. This ability of the most connected spins to
determine the sign of the magnetization may be a general
feature of scale-free networks and has been seen in the
Barabási-Albert model �21�.

The evolution of the system under disorder is obtained in
microscopic detail by the calculation of the local magnetiza-
tions and local SG order parameters, as described above. The
resulting full distributions of the local magnetizations and
SG order parameters are given in Fig. 1. To produce these
graphs, the m� and q� pools were coarse grained using a
binning procedure and the normalized heights of the result-
ing histograms color coded. For clarity, histograms smaller
than 10−5 are not shown. The distributions exhibit a distinc-
tive tuliplike shape, developing a rich structure as the system
is cooled, spreading from narrowly localized peaks at high
temperatures into complex bands of smaller peaks over the
whole range at intermediate temperatures. These bands in

turn converge toward the expected sharply defined values at
low temperatures, with local magnetization peaked around 1,
0, and −1, and the SG order parameter around 0 and 1. The
asymmetry leading to negative magnetization m for p�0.5
is evident in comparing the p=0.5 and p=0.9 local magne-
tization plots. The former is entirely symmetric between
negative and positive peaks, while in the latter the predomi-
nance of antiferromagnetic bonds leads to the bands of nega-
tive peaks becoming more prominent.

In conclusion, we have shown that ferromagnetic phases
and, moreover, spin-glass phases on Apollonian networks ex-
hibit a remarkable robustness, with an infinite critical tem-
perature for any amount of disorder. In fact, order persists to
infinite temperature even when almost all of the bonds in the
system are removed and even when almost all of the bonds
in the system are frustrated, namely, in the p infinitesimally
greater than zero and in the p infinitesimally less than one
regimes of the percolation and spin-glass problems, respec-
tively. This property should have consequences for actual
applications on networks. For example, interacting objects
arranged on Apollonian nanostructures would be able to
maintain cooperative behavior over a broad range of tem-
peratures and intrinsic disorder. Our local renormalization-
group theory method yields, in the network with frozen dis-
order, the exact local order parameters, up to now only
calculated approximately by mean-field theory. The resulting
local magnetizations and local spin-glass order parameters
do not yield just a distribution of values, as would be most
simply expected in systems with frozen disorder, but also
unexpectedly distinctive tulip structures with stalks, leaves,
and veins, evolving under temperature. It is clearly unlikely
that the new and intriguing tulip structures, with stalks,
leaves, and veins, in the microscopics are limited to Apollo-
nian networks, but more likely will appear, perhaps in vary-
ing topologies, in diverse small-world systems. Our locally
discriminating renormalization-group technique, in yielding
such detailed local results, should be of interest for the posi-
tional distribution of order in systems with inhomogeneities,
be it due to quenched impurities or surfaces, etc.
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