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Abstract The molecular motor myosin V transports cargo by stepping on actin filaments,

executing a random diffusive search for actin binding sites at each step. A recent experiment

suggests that the joint between the myosin lever arms may not rotate freely, as assumed in earlier

studies, but instead has a preferred angle giving rise to structurally constrained diffusion. We

address this controversy through comprehensive analytical and numerical modeling of myosin V

diffusion and stepping. When the joint is constrained, our model reproduces the experimentally

observed diffusion, allowing us to estimate bounds on the constraint energy. We also test the

consistency between the constrained diffusion model and previous measurements of step size

distributions and the load dependence of various observable quantities. The theory lets us address

the biological significance of the constrained joint and provides testable predictions of new myosin

behaviors, including the stomp distribution and the run length under off-axis force.

Introduction
Molecular motors are cellular machines that function by converting chemical energy into mechanical

work (Schliwa and Woehlke, 2003). Motors play key roles in many intracellular biological processes,

including signaling and the transport of cargo (Sun and Goldman, 2011). Members of the myosin

superfamily, one class of molecular motors, perform these functions by binding to actin filaments

and generating energy through ATP hydrolysis. Myosin V, a dimeric transport motor, is composed of

two stiff polymer chains joined at a pivot with an actin-binding head at the end of each chain (Reck-

Peterson et al., 2000). The motor walks forward along the actin, stepping hand-over-hand, by alter-

nating head detachment, with the free head performing a diffusive search for actin binding sites dur-

ing each step (Shiroguchi and Kinosita, 2007). Such unidirectional motility requires coordination

between the two heads with preferential detachment of the rear head, the so called ‘gating’ mecha-

nism, which is regulated by the strain within the lever arms while the heads are bound to actin

(Veigel et al., 2002; Veigel et al., 2005; Purcell et al., 2005; Sakamoto et al., 2008). Myosin V

propels itself toward the plus (barbed) end of the actin using two changes in the lever arm orienta-

tion. The power stroke, executed by an actin-bound head, swings the lever arm forward, while the

recovery stroke, executed during diffusion, returns the lever to its original orientation, which favors

binding to forward actin sites (Shiroguchi et al., 2011). Most frequently, myosin V takes » 74 nm

steps, roughly equal in length to the actin helical pitch, but shorter and longer steps also occur

(Yildiz et al., 2003). The near correspondence of the step size with the pitch, as well as the narrow

step distribution, allows myosin V to approximately maintain its azimuthal orientation with respect to

the actin over multiple steps (Sun and Goldman, 2011). Mutant myosins with altered lever arms

show a linear relation between mean step size and arm length (Sakamoto et al., 2005; Oke et al.,
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2010). Under moderate backward force myosin V remains highly processive, up to a stall force »

1.9 - 3 pN, (Mehta et al., 1999; Veigel et al., 2002; Kad et al., 2008; Uemura et al., 2004;

Cappello et al., 2007; Gebhardt et al., 2006), at which the mean velocity of the motor goes to

zero.

While myosin V is one of the most extensively studied motors, new functional features continue

to be discovered as the spatiotemporal resolution of experimental imaging improves. Most recently

Andrecka et al. (2015) achieved simultaneous millisecond temporal and nanometer spatial resolu-

tion with interferometric scattering microscopy in which the position of the gold nanoparticle

attached to one of the motor heads was used to track the diffusion of the free head during its step.

This measurement and recent electron micrographs of freely floating myosin taken by Takagi et al.

(2014) indicate that the joint between the myosin V lever arms does not rotate freely, but instead

has structural constraints giving rise to a preferred inter-arm joint angle. The presence of a joint con-

straint seems to contradict previous diffusion measurements by Dunn and Spudich (2007) and other

experiments (Shiroguchi and Kinosita, 2007; Fujita et al., 2012; Beausang et al., 2013) which indi-

cated a freely rotating joint. Further, a number of theoretical and numerical studies based on free

diffusion models have been remarkably successful in quantitatively describing various aspects of

myosin V motility (Hinczewski et al., 2013; Craig and Linke, 2009; Mukherjee et al., 2017).

To address these apparent conflicts, we extend a minimal model of myosin V previously intro-

duced by Hinczewski et al. (2013), incorporating a constraint on the relative orientation of the two

lever arms. The model combines a coarse-grained polymeric description of the diffusive search

(Thirumalai and Ha, 1998) with the reaction network of discrete states taken by the motor heads

during the mechanochemical stepping cycle (Vilfan, 2005a; Bierbaum and Lipowsky, 2011;

Sumi, 2017). The large persistence length of the myosin V lever arms allows us to derive an approxi-

mate but accurate semi-analytical expression for the equilibrium distribution of positions occupied

by the free head during the diffusive search. The kinetic network accounts for not only forward steps,

but also foot stomps (the head reattaching near the site of detachment) and backward steps which

have been observed experimentally (Kodera et al., 2010) and become more prominent as the resis-

tive force increases. In contrast to the simplified model of Hinczewski et al. (2013), here we include

the full set of available binding sites on the double-helical actin filaments, enabling a description of

the distributions of steps and stomps taken by myosin V. The backward force applied by the load

induces conformational changes in the lever arms, altering the diffusive search for binding sites and

the associated binding probabilities. The effects of the magnitude of the resistive force and direction

are easily incorporated into the theory. We supplement the analytical theory with Brownian dynamics

(BD) simulations of myosin stepping dynamics, the results of which largely concur with analytical pre-

dictions. In addition to addressing the constrained diffusion hypothesis, our model provides the

most comprehensive accounting to date of the full range of sub-stall experimental data, including

step-size distributions and the load dependence of several physical observables.

The polymer model gives direct insights into the connection between structural features of myo-

sin V, including the inter-arm joint constraint, and both the diffusive search and kinetics of the motor.

With a joint constraint, our model predicts diffusion profiles similar to that observed by

Andrecka et al. (2015). By computing the changes in diffusion as the constraint strength is varied,

we estimate upper and lower bounds on the constraint energy. Fitting the model to experimental

measurements of myosin V step distributions (Yildiz et al., 2003; Sakamoto et al., 2005; Oke et al.,

2010) and the force dependence of the backward-to-forward step ratio (Kad et al., 2008) and mean

run length/velocity (Mehta et al., 1999; Uemura et al., 2004; Clemen et al., 2005; Gebhardt et al.,

2006; Kad et al., 2008), we confirm the consistency of the constrained diffusion picture with previ-

ous experimental data on myosin V. Interestingly, while the joint constraint considerably alters the

diffusive search space, it has relatively small influence on the myosin V step size and force response.

A free diffusion model, for instance, produces similar kinetic behaviors. Our model allows us to

address questions related to the biological significance of the joint constraint. We find, for example,

that the constraint does not necessarily speed up the binding time, despite narrowing the space of

the diffusive search. However it does narrow the width of the forward step distributions on actin,

allowing the head to more consistently target the actin binding sites at half-helical length intervals.

Finally, the model provides testable predictions of new quantities yet to be probed by experiments,

including the stomp distribution near the stall regime and the robust run length under off-axis

forces.
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Results

Theoretical model for myosin V dynamics
In the following sections we describe the main features of our polymer structural model for myosin

V, the actin filament geometry, and how the model allows us to predict diffusion and stepping

behavior, including the probabilities of various kinetic pathways. The full mathematical details of the

analytical theory can be found in Appendix 1. The details of the BD simulations, which we used to

validate the analytical theory results, are described in Appendix 2.

Polymer model and actin filament geometry
Following Hinczewski et al. (2013), we model the actin-binding heads and lever arm domains of

myosin V as semi-flexible polymer chains with length L and persistence length lp. We will denote

each polymer chain as a ‘leg’ of the motor (consisting of the combined head and lever arm domains),

and refer to trailing or leading legs depending on whether a given leg is further away from or closer

to the barbed (plus) end of actin, respectively. Several experiments measuring myosin step distribu-

tions and other properties have been carried out comparing wild-type myosin V to mutants where

the lever arm length is altered through addition or deletion of IQ motifs (Yildiz et al., 2003;

Sakamoto et al., 2005; Oke et al., 2010). We assume the actin-binding head and IQ motifs are

each approximately 5 nm in length, so that wild-type myosin V (with 6IQ motifs) has L ¼ 35 nm and

the 4IQ and 8IQ mutants have L ¼ 25 nm and L ¼ 45 nm respectively. The persistence length has

estimated values ranging from lp » 100 nm (Howard and Spudich, 1996) to

lp » 375 nm (Vilfan, 2005a). While fitting our model to experimental data we allow the persistence

length to vary within this range, though the model predictions are qualitatively similar for any lp � L

in the stiff leg regime.
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Figure 1. Myosin V geometry. (A) Side view, with the actin filament plus end oriented toward the ẑ direction. Small circles on the actin monomers

denote the binding sites rn, described by Equation 1. The site n ¼ 0 corresponds to the position of the bound head. The bound polymer leg has a

preferred post-power stroke direction in the x� z plane defined by a constraint angle �c relative to the ẑ axis. Due to the hypothesized structural

constraint at the joint, the preferred angle between the lever arms is �p. The force transmitted through the tail domain has a polar angle �F relative to

the �ẑ direction. (B) Front view, with the actin plus end pointing out of the page. Each binding site has an associated outward pointing normal

direction with azimuthal angle fn. As an example, one such angle is shown for the red-colored site. All azimuthal angles are measured counter-

clockwise with respect to the x̂ direction. For binding to occur, the head has to be in the vicinity of the site, and oriented approximately along the

normal. We approximately capture this condition by a binding criterion that requires the azimuthal angle of the free leg, ff , to be anti-parallel to fn

within a cutoff range �dfac, highlighted in light red. The load force may have an off-axis component with azimuthal angle fF .
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The two polymer legs are connected at a joint forming the myosin V dimer (see Figure 1 for an

illustration of the geometry). Recent experimental evidence suggests this this joint does not not

rotate freely, but instead has a preferred joint angle �p giving rise to constrained diffusion

(Takagi et al., 2014; Andrecka et al., 2015). In our model, this preferred angle is enforced by a

potential HJ ¼ �ckBT½1� cosð�J � �pÞ�, which is minimum when the inter-leg angle at the joint �J is

equal to the preferred angle. The parameter �c is the constraint strength, designating the energy

cost to deviations from �p, while kB is Boltzmann’s constant and T is temperature. Note that for small

angle differences �J � �p, the constraint potential HJ »
1

2
�ckBTð�J � �pÞ2 is approximately harmonic. In

the limit �c ! 0 the joint becomes freely rotating with no preferred angle, the case considered previ-

ously Hinczewski et al. (2013). This cosine potential is used throughout the paper, but below we

briefly discuss how the form of the inter-leg potential affects the diffusion of the free head. The tail

domain, which attaches to cargo, transmits a load force F to the joint. The direction of the force is

parameterized by �F, measured clockwise from the �ẑ axis, and fF, measured counterclockwise

from the x̂ axis. Our main focus is on the behavior of myosin V under zero force and backward force

(�F ¼ fF ¼ 0), but we also consider off-axis forces at the end of the Results section.

The actin-binding heads, located at the ends of the polymer legs in our model, can bind to vari-

ous sites along the double-helical filamentous actin structure. Actin is composed of two filaments

each containing 13 actin subunits per helical rotation, with one binding site per subunit. The fila-

ments run parallel to the ẑ axis, leading to a geometry in which the binding sites rn, n ¼ 0;�1;�2; . . .

have positions

rn ¼ Rðcosfn � 1Þ x̂þR sinfn ŷþðn=2ÞDz ẑ; (1)

where R¼ 5:5 nm is the radius of the helix, Dz¼ 72=13»5:5 nm is the size of each actin subunit, and

fn ¼�12pn=13 is the angle between adjacent subunits (Lan and Sun, 2006). Equation 1 and all the

other key analytical quantities in our theory are summarized in Table 1 for ease of reference. Even

and odd n respectively correspond to subunits on the 1st and 2nd filaments of the double helix. Wild-

type myosin V steps most frequently to the half-helical sites n¼�13 located at z¼�36 nm, while

mutants favor other sites depending on their lever arm length (Sakamoto et al., 2005; Oke et al.,

2010).

When myosin V is bound to an actin filament, the lever arm can be in two orientations. After the

leg has bound, but before the power stroke has been executed, the lever arm points toward the

pointed (minus) end of the actin. After the power stroke, the leg rotates toward the barbed (plus)

Table 1. Summary of main analytical results.

Quantity Meaning Definition

rn position of actin subunits Equation 1

tnfp first passage time to subunit n Equation 3

PðrÞ equilibrium distribution of the free head position following Equation 3

Pn
T binding probabilities for trailing leg Equation 4

Pn
L binding probabilities for leading leg following Equation 4

Pn
dist distribution of head-to-head distances Equation 5

PT ðznÞ convolved trailing leg step distribution following Equation 5

PLðznÞ convolved leading leg step distribution preceding Equation 6

PðznÞ full convolved step distribution Equation 6

�̂0
c constraint direction (under force) Equation 7

T 0 power stroke effectiveness (under force) Equation 7

Pb=Pf backward-to-backward step ratio Step ratio section

zrun mean run length Equation 10

vrun mean run velocity preceding Equation 11

trun mean run time Equation 11
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end of the actin and is held at an angle �c above the actin. Similar to the inter-leg constraint

described above, in our model the preferred forward tilting angle is enacted through a harmonic

potential, Hc ¼ 1

2
nckBTðû0 � ûcÞ2. The constraint has strength nc, the unit vector û0 is the tangent to

the bound leg at the binding point, and the unit vector ûc defines the preferred direction, which lies

in the x̂� ẑ plane at an angle �c from the ẑ axis. As we will see below, steps and stomps occur only

when the bound leg is in the post-power stroke orientation. For the purposes of modeling these

aspects of the dynamics we do not need to consider a separate constraint potential for diffusion

while the bound leg has the pre-power stroke orientation.

Volume exclusion effects introduce another constraint on the orientation of the myosin legs dur-

ing diffusion. For instance, the myosin heads are unlikely to be found in close proximity due to steric

repulsion. Such exclusion interactions apply not only to the myosin heads, but also to the legs, which

have to be brought close together in order to accommodate small head separations. Though these

interactions can’t be explicitly included in the coarse-grained polymer model, we capture the effec-

tive repulsion between the myosin heads using the potential HV ¼ kBTðdV=rÞ6, where r is the dis-

tance between the bound and free myosin heads and dV is the effective length scale of the

repulsion. The magnitude of dV depends on the details of the interacting legs between the heads, in

particular their length L. Using BD simulations described below (which explicitly include all volume

exclusion interactions between the myosin legs), we estimate dV » 20, 27.5, and 35 nm for 4IQ, 6IQ,

and 8IQ myosin respectively.

Brownian Dynamics simulations
We also study the stepping dynamics of myosin V using BD simulations. In the simulations, myosin V

is treated as two connected and interacting polymer chains. The Hamiltonian that prescribes the

interactions and the resulting structural features like the persistence length, is outlined in Appendix

2. A BD trajectory begins with the trailing lever arm unbinding from actin (mimicking the effect of

ATP binding). A power stroke moves the unbound head quickly forward, after which it executes a

diffusive search until it finds an energetically favorable actin binding site. As in the analytical model,

the actin binding sites are given by Equation 1. We trace the diffusive search and record the binding

locations. The reported data is averaged over 200 randomized trajectories. The simulations allow us

to include the finite sizes of the lever arms, the effect of the volume excluded by actin, and a glass

cover-slip that is used in certain experimental setups. Additionally we can test different functional

forms for the binding criterion and power stroke execution.
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Figure 2. Myosin V kinetic pathways.
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Kinetic pathways
Myosin V can exhibit a wide range of behaviors, shown schematically in Figure 2, including steps

and stomps involving each polymer leg. Before following a particular kinetic pathway, Myosin V

starts in a waiting state where both legs are strongly bound to the actin and each head has an asso-

ciated ADP molecule. Each leg is in the post-power stroke orientation, pointed toward the plus end

of the actin, and the leading leg is bent backward under tension. The motor then goes through one

of many kinetic pathways, which can be broken into the five categories described below.

Forward steps
The myosin sits in the waiting state until the ADP molecule unbinds from the trailing head, allowing

an ATP molecule to take its place. With the bound ATP, the trailing leg is only weakly associated to

the actin and therefore quickly detaches. We assume (except for modeling one run velocity experi-

ment described below) that the ATP concentration is near saturation levels, so that ATP binding

occurs rapidly. Then the detachment process occurs roughly at the rate of ADP dissociation

t�1

d1 ¼ 12 s– 1, which has been measured experimentally (De La Cruz et al., 1999). Following detach-

ment of the trailing leg, the leading leg, previously under tension, undergoes rapid diffusive relaxa-

tion: since the leading leg had been bent backwards, away from its preferred post-power stroke

orientation, the leg relaxes toward the preferred orientation, thus leading to the entire system

swinging forward toward the plus end of actin (Hinczewski et al., 2013; Dunn and Spudich, 2007).

The timescale tr of this relaxation depends on the load, but is generally <
~

5 ms, based on both theo-

retical and numerical considerations Hinczewski et al. (2013). Over much longer timescales, the

free leg diffusively searches until it reaches a binding site on the actin. If we let the bound leg be

attached at the origin r ¼ 0 then the available binding sites are located at rn given by Equation 1,

and forward steps occur when the free leg reaches a site with n>0, assuming the following additional

binding criteria are also fulfilled.

Before the detached head can bind to actin, the ATP must hydrolyze, ATP fi ADP + Pi, which

has two primary functions. First, during hydrolysis the free head undergoes the recovery stroke,

rotating the head into the pre-power stroke orientation, so that binding to forward sites along the

actin is conformationally favorable. Second, the hydrolysis produces an ADP molecule, which is

required for the head to strongly associate with actin and successfully bind. The ATP hydrolysis

occurs at rate t�1

h = 750 s—1 (De La Cruz et al., 1999) and we assume the reverse reaction rate is

negligible.

Once ATP hydrolysis is completed, the free head must diffuse close enough to the actin to appre-

ciably interact and bind. We assume that binding occurs when the head is within a distance a from

an actin binding site. An upper bound for the capture radius a is the Debye screening length, which

under physiological conditions (KCL concentrations of 25 – 400 mM) is lD » 1:9� 0:5 nm (Craig and

Linke, 2009). On these length scales, the detached head can interact with the binding site and we

expect near certain binding at slightly shorter distances. Below we find that for a ¼ 0:4 nm the model

produces quantitative agreement with experimental data. Finally, in addition to requiring close prox-

imity of the free head to an actin binding site, the detached myosin head must also be in the correct

orientation for binding to occur (the full details of this binding criterion are described in the section

‘First Passage Times and the Binding Acceptance Region’ below.)

Trailing leg stomps
This kinetic pathway starts identically to the forward steps described above, namely the trailing leg

dissociation is followed by ATP binding and hydrolysis. In this case, however, the diffusive search

finds a site rn with n<0. Instead of executing a hand-over-hand step, the myosin stomps and the

heads remain in the same relative order on the actin, with a comparably small change in the center

of mass position of the myosin. As before, we assume the binding occurs once the head is within a

distance a from a binding site with the free leg in a sufficiently acceptable orientation.

The recovery stroke is executed during ATP hydrolysis and before binding, so that the pre-power

stroke orientation of the head favors binding to forward sites. After a forward step, the lever arm

points toward the minus end of the actin in a relaxed pre-power stroke state. To bind to sites behind

the bound leg, however, the free lever arm must bend and point toward the plus end of the actin

despite its pre-power stroke orientation with respect to the head. This unnatural configuration puts
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the free leg under additional strain, so that there is an energy barrier to binding at backward actin

sites. We model this effective barrier by reducing the probability of binding when the free head

reaches a radius a of actin sites with n<0. Instead of binding with certainty, the myosin head binds

with probability b<1, which we call the binding penalty. The reduced binding probability, a conse-

quence of the recovery stroke, increases the relative probability that the myosin will step forward,

contributing to the biased motion along the actin filament.

Backward steps
The other possible kinetic pathways start with the leading head detaching from the actin, in contrast

to the trailing head detachment which initiates forward steps and trailing leg stomps. After the

power stroke, the leading lever arm is under considerable backward tension. This tension dramati-

cally suppresses the release of ADP from the leading head by a factor of 50–70 (Kodera et al.,

2010; Rosenfeld and Sweeney, 2004). Since these events are very rare, an alternative detachment

pathway is dominant: the leading head dissociates from the actin but retains the associated ADP

molecule (Kodera et al., 2010; Purcell et al., 2005). This detachment pathway occurs at a slower

rate than trailing head detachment, t�1

d2 ¼ ðgtd1Þ�1, where g>1 is the gating ratio. Under backward

force of ~2 pN, single-headed myosin V has been observed to detach from actin at a rate of 1.5 s—

1 (Purcell et al., 2005), while previous theoretical calculations using the above described polymer

model estimate the backward force on the leading leg to be 2.7 pN (Hinczewski et al., 2013) when

myosin V sits in the waiting state with both legs bound. We therefore use t�1

d2 ¼ 1:5 s—1, which corre-

sponds to the gating ratio g ¼ 8.

Once the leading head unbinds from the actin, it executes a diffusive search until it reaches an

actin binding site. Note that the bound leg is in the post-power stroke state, so the diffusion is statis-

tically identical to that which occurs during forward steps and trailing leg stomps. In this case, how-

ever, the free head has an associated ADP molecule immediately after detachment, so the free leg

can rebind without undergoing ATP hydrolysis. Furthermore, because ATP hydrolysis is not exe-

cuted, the free head remains in the post-power stroke state orientation which favors binding to

backward sites. If we let the bound leg be at the origin r ¼ 0, a backward step occurs when the diffu-

sive search finds an actin site rn with n<0. Hence, the free head orientation favors binding to these

sites and binding occurs with probability 1 when the head diffuses within a distance a of the target

site and the free leg is within the acceptance region.

Leading leg stomps
Similar to the trailing leg stomps described above, the myosin V can also execute a leading leg

stomp (Kodera et al., 2010; Andrecka et al., 2015). This kinetic pathway begins with leading leg

detachment, identical to the backward step. To perform a stomp, the free head diffuses to an actin

binding site rn with n>0. Since the free head is in the pre-power stroke state, binding to these for-

ward sites requires an unnatural deformation of the free leg, which as in the case of trailing leg

stomps, introduces an effective energy barrier to these events. Therefore, when the free head dif-

fuses within a radius a of a target site with the free leg in the acceptance region, binding occurs with

probability b<1, given by the binding penalty.

Termination
The final kinetic pathway occurs when the bound myosin head detaches before the free head finds

an open actin binding site, terminating the processive run of myosin V. We assume that the bound

leg has a constant detachment rate equal to t�1

d1 , independent of the backward load force exerted

on the motor.

These five pathways complete the kinetic description of myosin V procession. The first four path-

ways, forward steps, leading and trailing leg stomps, and backward steps, each return the myosin to

its waiting state with both legs bound, while termination is a complete dissociation from the actin.

Therefore the myosin will continue to execute steps and stomps until termination which ends the

run. For notational convenience below, we will denote the binding penalty of a given actin site rn fol-

lowing trailing head detachment as bn. Then bn ¼ 1 for n>0, there is no penalty for forward steps,

and bn ¼ b<1 if n<0. The binding penalty following leading head detachment is b�n. If we sum the

probabilities over all binding sites possible in a given pathway, we get the overall probability of each
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type of step and stomp. We define Pf , PLs, PTs, Pb, and Pt to be the overall probability of myosin

executing a forward step, leading/trailing leg stomp, backward step, and termination respectively,

starting from the waiting state. The above pathways are dominant when the backward load forces

are below or slightly above the stall force, for which experimental estimates range from

» 1:9� 3 pN (Mehta et al., 1999; Veigel et al., 2002; Kad et al., 2008; Uemura et al., 2004;

Cappello et al., 2007; Gebhardt et al., 2006). For large super-stall forces ( >
~

4 pN), the myosin can

experience power stroke reversal, swinging the leading lever arm back toward the minus end of the

actin (Sellers and Veigel, 2010). At these high forces the diffusive search can therefore occur with

the bound leg in the pre-power stroke orientation, so additional pathways must be added to the

above model to accurately describe the super-stall behavior of myosin V. We restrict our focus to

the sub-stall and stall regimes.

First passage times and the binding acceptance region
The key quantities necessary for our theoretical description of myosin V processivity are the mean

first passage times, tnfp, of the free head to each of the actin binding sites rn. These determine the rel-

ative binding probabilities for each of the many possible target actin sites. Combined with the above

described step and stomp pathways, this gives us a complete kinetic description of myosin V

informed by the polymer nature of the lever arms. Below we use the first passage times to compute

various experimentally observable quantities including step distributions, the forward/backward step

ratio, and the mean run length and velocity.

Our polymer model admits an accurate approximate analytical expression for the mean first pas-

sage time. In past theoretical work by Hinczewski et al. (2013), it was shown that the mean first pas-

sage time is approximately

tnfp »
1

4pDhaPðrnÞ
; (2)

where a is the capture radius, PðrÞ is the probability density of the free head being at position r, and

Dh ¼ 5:7� 10
�7 cm2/s is the diffusion constant of the myosin V head which was estimated using the

program HYDROPRO (Ortega et al., 2011) with the Protein Data Bank structure 1W8J

(Coureux et al., 2004). Here PðrÞ is the equilibrium distribution achieved at timescales greater than

tr, the relaxation timescale of the polymer. This result relies on the separation of timescales between

the polymer relaxation of the lever arms and the first passage of the diffusive search. Previous BD

simulations (Hinczewski et al., 2013) found that the lever arm relaxation timescale is tr <
~

5 ms, which

is two orders of magnitude smaller than the smallest mean first passage times, tmin
fp ~Oð0:1msÞ.

Another requirement is that the time to diffuse the distance a, ta ¼ a2=Dh »2:8 ns be much smaller

than the relaxation time tr. This condition, which is clearly satisfied since ta=tr »5� 10
�4 � 1, guaran-

tees that after the free head reaches the capture radius it can undergo fast microscopic rearrange-

ments required to bind without significant conformational changes in the rest of the lever arm.

In our model there is an additional condition necessary for binding: the free leg must be within

the angular acceptance region with respect to the actin subunit. Therefore, we are actually inter-

ested in the mean first passage time to finding a binding site and simultaneously having the correct

orientation. Electron and atomic force microscopy imaging of myosin V indicate that while bound

the myosin head attaches approximately perpendicular to the outer surface of an actin subunit

(Oke et al., 2010; Kodera et al., 2010). This binding, which involves the interaction of a specific

region of the head with a corresponding region on the actin subunit, is mimicked in our coarse-

grained model through an angular criterion: we require that the angle between the free leg and the

outward pointing normal (r̂n � ẑ) at the target actin site be smaller than dfac, which defines a conical

acceptance region in which binding is allowed. Based on fits to experiments described below, we

set dfac ¼ 55:6�. We assume binding occurs with probability 1 when the free head is within a dis-

tance a from a binding site and the free leg is inside the acceptance region.

Though this angular criterion is straightforward to implement in our BD simulations, for the analyt-

ical theory it significantly complicates the calculation. Hence we simplify the angular criterion in the

analytical model, in a way that preserves most of the physical effect while making the derivation of

the mean first passage time tractable. Instead of a conical acceptance region around the outward

pointing normal to the target actin site, we only require an azimuthal angle similar to the normal.
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This amounts to replacing the probability density PðrnÞ in Equation 2 with the joint density of finding

the free head at position rn and the free leg simultaneously having azimuthal orientation similar to

that of the binding site, Pðrn; df1>ðff þ pÞ � fn>� df2Þ. Here ff is the azimuthal angle of the end-

to-end vector for the free myosin leg and fn ¼ �12pn=13 is the azimuthal angle of an actin binding

site (note the factor of p enters because the free leg points toward the binding site). The angles are

shown in Figure 1B. The acceptance region defined by ðdf1; df2Þ will for simplicity be taken as sym-

metric, df1 ¼ df2 ¼ dfac, but we do not rule out the possibility that asymmetry in the myosin head

or actin binding pocket favors binding from one direction. Similar effects have been previously

observed for myosin V, for instance the suppression of ADP dissociation and head detachment

depends asymmetrically on the direction of off-axis forces (Oguchi et al., 2010). The acceptance

region requirement increases the first passage time, because in some cases the free head will diffuse

to a binding site but have the wrong orientation and fail to bind. Therefore, the required separation

of timescales still holds and, with a symmetric acceptance region, the mean first passage time is,

tnfp »
1

4paDhPðrn;dfac>jðff þpÞ�fnjÞ
: (3)

The use of the simplified angular criterion in the analytical theory gives results similar to the BD

simulations, where the full conical acceptance region was used.

The properties of the polymer legs as well as the influence of the binding acceptance conditions

are implemented through the joint distribution Pðrn; dfac>jðff þ pÞ � fnjÞ. Adapting a polymer

mean field theory (Hinczewski et al., 2013; Thirumalai and Ha, 1998) and exploiting the fact that

the myosin lever arms are in the stiff regime lp � L, we derive an approximate analytical expression

for this distribution. We also derive an expression for PðrÞ at any point r in space, which describes

the equilibrium distribution of the free leg during diffusion and captures the effects of the inter-leg

structural constraint, the bound leg constraint, and the load force (Appendix 1). Assuming the bind-

ing events along with trailing/leading head detachment and hydrolysis are each Poisson processes

with rates ðtnfpÞ
�1, t�1

d1 , t
�1

d2 , and t�1

h respectively, we derive the probabilities of passage through each

kinetic pathway and analytical expressions for observable quantities including step distributions as

well as mean run length and velocity.

Estimating the joint constraint strength from the free head spatial
distribution during stepping
Until recently, the joint between the myosin V lever arms was believed to be freely rotating, allowing

the detached head to perform a full three-dimensional diffusive random walk while searching for

actin binding sites. This hypothesis was supported by the work of Dunn and Spudich (2007), who

used darkfield microscopy to image (from above) the diffusive path of 40 nm gold nanoparticles

attached to the leg of myosin V. Their measured diffusion contours are radially symmetric about the

inter-leg joint implying a freely rotating hinge. Other experiments also suggest a freely rotating joint

(Shiroguchi and Kinosita, 2007; Fujita et al., 2012; Beausang et al., 2013), while theoretical and

numerical models based on the free diffusion hypothesis largely agree with experimental data

(Hinczewski et al., 2013; Craig and Linke, 2009; Mukherjee et al., 2017). Despite this body of evi-

dence, recent experiments with improved spatiotemporal imaging resolution indicate that the myo-

sin V joint might not freely rotate, instead preferring a particular inter-leg angle due to structural

constraints. In particular, electron micrographs of Takagi et al. (2014) show that in the absence of

actin, myosin V has a weakly preferred inter-leg angle of approximately 110˚. Further, by tracking 20

nm gold particles attached to the N-terminus of the myosin head with interferometric scattering

microscopy, Andrecka et al. (2015) observed a multi-peaked diffusion contour, contradicting the

presence of a freely rotating joint.

Our polymer model accounts for structural constraints on diffusion encoded through the inter-leg

angle preference �p and constraint strength �c. We let �p ¼ 83:0�, as determined by fitting to step

distribution and force dependence experiments discussed below. While this value is somewhat

smaller that the actin-free Takagi et al. (2014) observations, we do not expect an exact correspon-

dence. In particular, the observed angle will be larger than �p due to volume exclusion interactions

and the effective preferred angle in the presence of actin may be further altered through the influ-

ence of the bound leg on the overall conformation of the protein. The presence of a joint constraint
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changes the diffusion of the free leg so that it swings through a nearly one-dimensional arc while

searching for binding sites rather than exploring the full three-dimensional space. In order to visual-

ize the diffusion, we use the probability density of the location of the free head PðrÞ projected onto

the two dimensional z� x, z� y, and y� x planes as well as the cylindrical plane z� �, where

� ¼ x2 þ y2. The projection is performed by integrating over the remaining degree of freedom, for

instance Pðx; zÞ ¼
R

dyPðrÞ.
The diffusion contour measured by Andrecka et al. (2015) and shown in Figure 3I, corresponds

to the z� x projection since they imaged through a glass surface parallel to both the myosin bound

leg and direction of motion. We evaluated this contour using our analytical theory for several values

of the inter-leg constraint strength, �c ¼ 0, 3, 5, and 12 (Figure 3A–D). These calculations agree well

with diffusion contours measured from Brownian dynamics simulations for the same values of �c

(Figure 3E–H). Our results show that a non-zero inter-leg constraint �c>0 is required to produce a

multi-peaked contour similar to that measured by Andrecka et al. (2015). In particular, when �c ¼ 5

the predicted diffusion agrees well with the experimental data, while �c ¼ 3 and �c ¼ 12 respectively

produce contours with lower and higher peaks than the measured distribution. Therefore, we esti-

mate the energy of the inter-leg constraint lies within this range 3KBT <
~

�cKBK <
~

12KBT . Incidentally,

Figure 3. Contours of the myosin V free head position distribution PðrÞ projected onto the z� x plane. Top row: theoretical predictions for (A) free

diffusion (�c ¼ 0) and (B–D) constrained diffusion with inter-leg constraint strength (B) �c ¼ 3, (C) �c ¼ 5, and (D) �c ¼ 12. Bottom row: the

corresponding contours measured from Brownian dynamics simulations, with inter-leg constraint strength (E) �c ¼ 0, (F) �c ¼ 3, (G) �c ¼ 5, and (H)

�c ¼ 12. (I) Experimental measurements of the diffusion by Andrecka et al. (2015). Adding an inter-leg constraint potential produces a multi-peaked

diffusion pattern. The heights of the peaks are similar to the experimental measurements for 3<
~

�c <
~

12. Note that the x ¼ 0 axis in the experimental

data corresponds to the position of the gold bead attached to the myosin head when the head is bound to actin. Given the ~5 nm size of the head and

~10 nm radius of the bead, this accounts for the approximately 15 nm vertical shift between the theoretical/simulation distributions and experiment. In

the former the x ¼ 0 axis corresponds to the top of the actin filament (where the bound head is attached).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Alternative projections of the constrained diffusion (�c ¼ 5).

Figure supplement 2. Alternative projections of the free diffusion (�c ¼ 0).

Figure supplement 3. Constrained diffusion of myosin V under 2 pN backward force.

Figure supplement 4. Constrained diffusion of the 4IQ myosin mutant.

Figure supplement 5. Constrained diffusion of the 8IQ myosin mutant.

Figure supplement 6. Effect of the form of the joint potential on free head diffusion.

Figure supplement 7. Effects of cover-slip volume exclusion on diffusion.
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the upper bound 12 kBT is also approximately the energy at which our model can no longer accu-

rately predict the multi-peaked step distribution of 8IQ mutants discussed in the next section.

For the cases where the constraint is strong enough to induce a bimodal distribution, the two

peaks are roughly equal in height both in the analytical theory and in simulations. In constrast, the

experimental distribution is asymmetric, with the peak closer to the actin about 1.5 times higher

than the one further away from the actin. While we cannot rule out that some aspect of this asymme-

try may be due to additional structural features not present in the model, it is also likely to be at

least in part an artifact of the finite time resolution of the experiment and possibly consequences of

attaching a gold nanoparticle to infer the motility of the detached motor head. The peak region fur-

ther away from actin is the one that is initially visited after detachment of the trailing head. If one

cannot resolve the precise moment of detachment, one might not be able to fully capture this por-

tion of the distribution in the experimental data. In fact, Andrecka et al. (2015) measured the distri-

bution for a range of ATP concentrations, and as the ATP was progressively increased from 1mM to

1 mM, the height of the far peak decreased relative to the near peak, even though the distribution

should in principle be independent of ATP. Detachment is much more rapid at high ATP, however,

and the resulting practical difficulties in collecting trajectories were mentioned in the paper.

The other projections complete the picture of the free head diffusion. These are shown for the

constrained diffusion model (�c ¼ 5) in Figure 3—figure supplement 1 and for the free diffusion

model (�c ¼ 0) in Figure 3—figure supplement 2. When the inter-leg constraint is present, the y� x

(front view) and z� y (top view) projections together show that during its diffusive search the free

leg swings out away from the actin axis at a particular height, with motion similar to that of a draw-

ing compass. We also computed and simulated diffusion contours for myosin V under 2

pN backward force (Figure 3—figure supplement 3) as well as for the 4IQ ((Figure 3—figure sup-

plement 4) and 8IQ mutants (Figure 3—figure supplement 5). Under force, the free head distribu-

tion rotates toward the minus end of the actin changing which target binding sites are most likely to

be found during a step. The diffusion of mutants is almost identical to wild-type myosin V, but is

scaled up or down based on lever arm length. This suggests that qualitative differences in stepping

between mutants (discussed below) are due entirely to actin geometry.

Our calculation of the free head spatial distribution allows us to test how different forms of the

inter-leg potential affect the diffusive step of myosin V. Figure 3—figure supplement 6 shows the

Kullback-Leibler (KL) divergence DKLðPcosjPÞ ¼
R

d3rPcosðrÞ log PcosðrÞ=PðrÞ½ � between the free head

distribution PcosðrÞ arising from the cosine joint potential HJ ¼ �ckBT ½1� cosð�J � �pÞ� introduced

above, and the distribution PðrÞ arising from a general quartic inter-leg potential

HJ ¼ �ckBT½ðD�Þ2=2þ h3ðD�Þ3=3!þ h4ðD�Þ4=4!�, where D� ¼ �J � �p. Also shown in this figure are the

x� z diffusion contours for a few representative alternative potentials. This calculation provides a

quantitative picture of how much the diffusion changes over a range of joint potentials. Specifically,

our results are insensitive to the form of the potential when the anharmonic terms (h3, h4, etc.) are

small enough to not introduce a new energy minimum in the physically relevant range of inter-leg

joint angles (D� <
~

p=2). In this case, the resulting diffusion contour is bimodal and qualitatively similar

to that shown in Figure 3.

The imaging techniques used by Andrecka et al. (2015) require a glass cover-slip which excludes

half the space available for the myosin diffusive search. They report no evidence of interactions

between the myosin and the surface. However, entropic forces due to volume exclusion do influence

the diffusion. While it is unlikely these effects would induce a multi-peaked diffusion contour, we

explicitly check this by adding a potential barrier excluding half of space in Brownian dynamics simu-

lations (see Figure 3—figure supplement 7). Our results rule out the appearance of a multi-peaked

distribution due solely to volume exclusion and confirm the cover-slip only slightly changes the shape

of the diffusion contours.

The discrepancy between the single-peaked distribution of the Dunn and Spudich (2007) experi-

ment and the the multi-peaked distribution of Andrecka et al. (2015) remains a controversy, but as

noted in the latter work it can be partially resolved by adding localization noise and re-binning their

data, accounting for the differences in gold nanoparticle size and the associated measurement preci-

sion between the two experiments. The fact that Dunn and Spudich (2007) attached their gold

nanoparticle labels on the lever arm closer to the joint may also have contributed to concealing the

constrained diffusion: the closer the label is to the joint, the closer together the two peaks appear in
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the distribution, and the harder it becomes to distinguish one from two peaks given finite experi-

mental spatial resolution.

In the following sections, we use our model to test the constrained diffusion hypothesis against

the large body of existing experimental data on myosin V. In the Discussion, we compare the con-

strained and free diffusion models and suggest further experiments to more conclusively discern

between these competing myosin V diffusion hypotheses.

Constrained diffusion model predicts zero force step distributions
The spatial fluctuations of motor proteins, among them distributions of step sizes, have long been

an intriguing aspect of their behavior (Das and Kolomeisky, 2008). Let us first consider the step size

distribution under zero backward force, one of the most commonly measured aspects of myosin V

dynamics. The classic experiment by Yildiz et al. (2003) measured one of the first myosin step distri-

butions using fluorescence imaging with one nanometer accuracy (FIONA). Later experiments using

FIONA (Sakamoto et al., 2005) and electron microscopy (Oke et al., 2010) determined step distri-

butions for both wild-type myosin as well as 4IQ and 8IQ mutants. The FIONA experiments measure

the distance travelled by the trailing head while executing a forward step, while the electron micro-

graphs were used to directly determine the number of actin sites separating legs while bound. These

experiments qualitatively agree, with the wild-type distribution peaked at the half-helical site

(z = 36 nm) and an approximately linear relation between step size and lever arm length, though

Sakamoto et al. (2005) measured slightly shorter 4IQ steps than Oke et al. (2010). Furthermore,

Sakamoto et al. (2005) found that, due to the longer leg length, 8IQ mutants can reach the full heli-

cal actin sites (z = 72 nm), giving rise to multi-peaked step distributions. This effect was not observed

by Oke et al. (2010), which they note is likely because their image processing technique did not

resolve large steps for which the myosin is stretched out very close to the actin.

Our polymer model gives the step distributions in terms of the structural parameters and kinetic

rates described in the preceding sections. As shown in Appendix 1, after trailing leg detachment the

probability of a step/stomp to site n is

Pn
T ¼ bnt

2

d1

tnfpð1þ rTtd1Þðtd1þ thÞ
; (4)

where rT ¼
P

n bnðtnfpÞ
�1. The step/stomp probabilities for the leading leg Pn

L are given by the same

expression with the substitutions, bn ! b�n, th ! 0, and rT ! rL ¼
P

n b�nðtnfpÞ
�1 to account for the lack

of ATP hydrolysis and recovery stroke in these pathways. The trailing leg detachment occurs with

probability gð1þ gÞ�1 while the leading leg detachment occurs with probability ð1þ gÞ�1. Thus, the

probability of observing a bound myosin with n subunits between the leading and trailing heads is

Pn
dist ¼

g

1þ g
ðPn

TþP�n
T Þþ 1

1þ g
ðPn

L þP�n
L Þ; n>0: (5)

This distribution (normalized to remove termination pathways), describes the probability of find-

ing n actin sites between bound heads, which was measured in the Oke et al. (2010) experiment.

The overall step sizes, that is the distances traveled by the trailing leg in executing a forward step,

have a distribution given by the convolution PTðznÞ ¼ ðPdist �PTÞ½n�, where zn ¼ nDz=2. The distribu-

tion PTðznÞ includes both steps and stomps. For comparison to forward step distributions measured

in experiments, we exclude the stomps by disallowing binding behind the bound leg and setting

Pn
T ¼ 0 for n<0 in the convolution. To account for the measurement resolution in FIONA experiments,

we convolve this distribution with 1 nm Gaussian noise and bin the data identically to

Sakamoto et al. (2005).

To fit step distributions, we fix the binding penalty b, capture radius a, and power stroke effec-

tiveness defined as T ¼ 1þ 20nv=ð20þ 7kncÞ, where k ¼ L=lp, determined via fitting to force depen-

dence data (described below). The variable T measures the energy loaded by the power stroke in

the effective spring formed by the lever arms (Hinczewski et al., 2013). We vary the bound leg con-

straint angle �c, the acceptance region size dfac, and inter-leg preferred angle �p to minimize the

Kullback-Leibler (KL) divergence between experimental step distributions and theoretical predictions

for 4, 6, and 8 IQ myosin V. We also let the persistence length lp and bound leg constraint strength
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nc vary along curves of constant T , but the model predictions are robust to such parameter variation.

Informed by these fits, we choose a set of parameters for which agreement between theory and

experiment is excellent for all distributions. We further refine the parameter choices by alternating

between fitting step distributions and force dependence behavior, feeding the parameters deter-

mined by one fit into the other. We find that �c ¼ 65:0�, dfac ¼ 55:6� and �p ¼ 83:0� optimizes the

agreement between our theory and the full set of experimental step distributions. These and all the

other parameter values in the model are summarized in Table 2. This constraint angle is similar to

that indicated by imaging experiments (Walker et al., 2000; Kodera et al., 2010; Lewis et al.,

2012), while the preferred inter-leg angle is slightly smaller than that observed for unbound myosin

V (Takagi et al., 2014), which, as noted above, could be due to volume exclusion effects and the

influence of binding to actin. The azimuthal constraint dfac corresponds to an acceptance region of

~111˚, which plays a key role in restricting binding too far from the half-helical and full-helical actin

sites. Step distributions and direct measurements of the azimuthal trajectory of myosin indicate steps

with large azimuthal rotations are rare (Lewis et al., 2012), likely due to orientational binding

constraints.

The theoretical head separation distributions are shown in Figure 4, row 1 alongside data from

Oke et al. (2010) while in Figure 4, row 2 we plot the full convolved step distributions. Since

Oke et al. (2010) were not able to resolve large head separations for 8IQ mutants, we compute an

alternative ‘small steps’ distribution in which large head separation (> 18 actin subunits) is not con-

sidered. The theoretical distribution peaks and width agree well with Oke et al. (2010), especially

Table 2. Summary of myosin V model parameters.

For the parameters identified as fit to experiments, the following approach was used: as described in the text, �c, �p, and dfac were

varied to fit the step distributions, while b, a, and T ¼ 1þ 20nc=ð20þ 7kncÞ were varied to fit the force response data. Parameters lp

and nc were also allowed to vary along curves of constant T while fitting the step distributions.

Parameter Value Source

Mechanical Parameters

Leg contour length, L 35 nm Craig and Linke, 2009

Head diffusivity, Dh 5.7 � 10—7 cm2/s Ortega et al., 2011; Coureux et al., 2004

Leg persistence length, lp 350 nm Fit to experiment*, Howard and Spudich, 1996; Vilfan, 2005a

Bound leg constraint angle, �c 65.0˚ Fit to experiment*, Lewis et al., 2012

Bound leg constraint strength, nc 261 Fit to experiment

Inter-leg preferred angle, �p 83.0˚ Fit to experiment*, Takagi et al., 2014

Inter-leg constraint strength, �c 5 Fit to experiment

Binding Parameters

Actin radius, R 5.5 nm Lan and Sun, 2006

Actin monomer size, Dz 72/13 nm Lan and Sun, 2006

Actin rotation angles , fn —12pn/13 Lan and Sun, 2006

Capture radius, a 0.4 nm Fit to experiment*, Craig and Linke, 2009

Binding penalty, b 0.045 Fit to experiment

Acceptance region, dfac 55.6˚ Fit to experiment

Chemical Rates

Hydrolysis rate, t�1

h
750 s—1 De La Cruz et al., 1999

TH detachment rate†, t�1

d1
12 s—1 De La Cruz et al., 1999

LH detachement rate, t�1

d2
1.5 s—1 Purcell et al., 2005

Gating ratio, g ¼ td2=td1 8

*Fits restricted to physically plausible parameter ranges as determined from the indicated literature.
†The TH detachment rate assumes saturating ATP conditions. This is used throughout the paper except for the low ATP run velocity calculation (see Run

velocity).
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for the 4IQ mutant. For 6IQ and 8IQ myosin V, the distributions are slightly broader, more similar to

Sakamoto et al. (2005). In particular, we capture the multi-peaked 8IQ distribution, with peaks at

about 78 nm, 110 nm, and 135 nm (indicated by arrows in panel F). The first peak comes from steps

in which the free leg detaches from the half-helical site behind the bound leg and steps to the half-

helical site ahead of the bound leg. Similarly, the second peak corresponds to steps with one head-
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Figure 4. Step size distributions for myosin V and mutants with altered leg length. Top row: raw step distributions for (A) the 4IQ mutant, (B) the 6IQ

wild-type, and (C) the 8IQ mutant. Bottom row: full (convolved) step distributions for (D) the 4IQ mutant, (E) the 6IQ wild-type, and (F) the 8IQ mutant,

with three theoretical peak locations indicated by arrows. Theoretical distributions are shown as histograms with Brownian dynamics simulations and

experimental data from Oke et al. (2010), Sakamoto et al. (2005), and Yildiz et al. (2003) indicated by symbols. The raw data from Oke et al. (2010)

is convolved and binned in the bottom row. Since the imaging methods used in this experiment did not resolve large steps taken by the 8IQ mutant, in

panel C we show an alternative theory (in red) with a cutoff where only small steps are allowed. The actin monomers drawn below the top row are

shaded according to the analytical theory results, with the darkest color normalized to the peak of the distribution.

The online version of this article includes the following video and figure supplement(s) for figure 4:

Figure supplement 1. Step distributions for myosin V and mutants with a freely rotating inter-leg joint.

Figure 4—video 1. BD simulation trajectory illustrating stepping for the 6IQ wild-type.

https://elifesciences.org/articles/51569#fig4video1

Figure 4—video 2. BD simulation of stepping for the 6IQ wild-type with a freely rotating joint, but with a longer step (final head separation > 36 nm).

https://elifesciences.org/articles/51569#fig4video2

Figure 4—video 3. BD simulation of stepping for the 6IQ wild-type with a freely rotating joint, but with a shorter step (final head separation < 36 nm).

https://elifesciences.org/articles/51569#fig4video3

Figure 4—video 4. Similar to Figure 4—video 1, but with an inter-leg joint constraint (�c ¼ 5).

https://elifesciences.org/articles/51569#fig4video4

Figure 4—video 5. Similar to Figure 4—video 2, but with an inter-leg joint constraint (�c ¼ 5).

https://elifesciences.org/articles/51569#fig4video5

Figure 4—video 6. Similar to Figure 4—video 3, but with an inter-leg joint constraint (�c ¼ 5).

https://elifesciences.org/articles/51569#fig4video6
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to-head distance (during detachment or binding) being the full helical length and the other being

the half-helical length. Finally, the third, smallest peak corresponds to the free leg starting and end-

ing at the full helical distance. One might expect the rich stepping behavior of the 8IQ mutant to be

inconsistent with the constrained diffusion hypothesis. If the joint does not freely rotate, can the

myosin reach both the half- and full-helical actin subunits? Our model shows that a 5 KBT joint con-

straint energy is sufficiently weak to allow multi-peaked step distributions, but strong enough to con-

siderably alter the diffusion (see previous section). We also tested large constraint energies and

found that for �ckBT » 10� 12kBT we could no longer simultaneously fit the multi-peaked 8IQ step

distribution and other step distributions. This upper bound on the joint constraint energy is similar

to that estimated from diffusion contours.

The BD simulation step distributions are consistent with the results of the analytical model, as

seen in Figure 4. Additionally, the simulations allow us to directly visualize examples of individual

stepping trajectories. Figure 4—video 1 through Figure 4—video 3 show steps of three different

sizes for the 6IQ wild-type without the inter-leg constraints (�c ¼ 0). Figure 4—video 4 through Fig-

ure 4—video 6 are analogous, but with the constraint present (�c ¼ 5).

Myosin V exhibits robust step distributions under load
As a backward load force is applied to myosin V, forward steps decrease slightly in size while trailing

leg stomps and backward steps become more likely. To elucidate this transition, we derive the com-

bined leading and trailing leg step distribution (including stomps). To begin, in addition to the trail-

ing leg steps considered above, we must also consider the distributions of steps and stomps

originating from leading leg detachment. In this case, the bound leg position is behind the free leg

starting position. So the initial distance between the heads is distributed as Pn
�dist ¼ P�n

dist. The lead-

ing leg step distribution is then given by the convolution PLðznÞ ¼ ðP�dist � PLÞ½n�, with zn ¼ nDz=2,

and the combined leading/trailing leg step distribution is,

PðznÞ ¼
g

1þ g
PTðznÞþ

1

1þ g
PLðznÞ; (6)

where PTðznÞ is as defined in the preceding section. The force dependence of this distribution comes

from the influence of the force on the myosin lever arm, which bends under the load giving rise to a

new effective constraint direction û0c and new power stroke effectiveness T 0,

û0c ¼
T ûc þbFLF̂

T 0 and T 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T 2 þðbFLÞ2þ 2T bFLF̂ � ûc
q

; (7)

where F is the magnitude of the load force with direction F̂, L is the myosin leg length, and

b¼ 1=ðkBTÞ. For backward forces, F̂¼�ẑ, the lever arm bends toward the minus end of the actin

increasing the effective constraint angle, but decreasing the power stroke effectiveness.

In Figure 5A, we show the combined distribution Equation 6 for sub-stall backward forces,

F = 0.0 and 1.0 pN, at stall force, F = 1.9 pN, and above stall force, F = 2.5 pN. In this plot, peaks

near +72 nm are forward steps, peaks near 0 nm are trailing or leading stomps, and peaks near –

72 nm are backward steps. At zero force forward steps are dominant, exhibiting the experimentally

observed step distribution, while forward leg stomps also occur less frequently. The myosin remains

resilient as the force increases to 1 pN, with the step distribution shifting backward by approximately

a single actin binding site. This result is consistent with the step distribution under 1 pN backward

force measured by Clemen et al. (2005), which was nearly identical to zero force step distributions.

Further increasing the force to stall at 1.9 pN, we see that the probability of forward steps dra-

matically decreases. Interestingly, even though forward steps are no longer kinetically dominant, the

location and shape of their distribution remains robust, as shown in Figure 5B (BD simulations show

the same qualitative behavior, see Figure 5—figure supplement 1). The stall force is defined to be

the force at which the expected run length of the myosin is zero. Our calculation shows that stall is

due to the emergence of a backward step distribution identical to the that for forward steps. Thus,

at stall force the myosin takes forward and backward steps with equal probability, making no prog-

ress along the actin. In this regime, however, the dominant kinetic pathway is trailing leg stomps

which give rise to the large peak around 0 in the step/stomp distribution. Finally, increasing the force
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further eliminates all forward steps, increasing the prevalence of trailing stomps while shifting the

backward step distribution by about one actin binding site.

An interesting prediction made by the model is the distribution of stomps, which is particularly

apparent above stall force and has comparable width to the zero force step distribution. With ever

improving imaging technology, it may soon be possible to reliably detect such variation in stomping

experimentally. Because stomps are the dominant kinetic pathway in this force regime, many stomp-

ing events could be observed if sufficient imaging precision is achieved. Such measurements would

provide further insights into how myosin V executes foot stomps. If the measured distribution signifi-

cantly differs from our theoretical prediction, perhaps alternative mechanisms are involved in foot

stomping. Since the leading head retains its ADP molecule after unbinding, it can in principle rebind

quickly. Therefore, it is possible that leading foot stomps are dependent on non-equilibrium diffu-

sion that occurs before the myosin legs relax to equilibrium. Further experiments are required to

complete our understanding of myosin foot stomping.

The predictions made in Figure 5 will require optical trap experiments in which a load force is

applied to a cargo. If the contours of the distribution of the free head are to be simultaneously mea-

sured then it becomes necessary to also attach a gold nanoparticle (Andrecka et al., 2015). The

analyses of the results of such experiments, which could test our predictions, might be complicated

due to hydrodynamics effects of both the cargo and the gold nanoparticle.

Probing the biological function of the joint constraint: effects on timing
and consistency of stepping
In addition to making behavioral predictions, our model also provides insights into the potential bio-

logical function of the structural joint constraint. As discussed above, our computed diffusion con-

tours and the measurements of Andrecka et al. (2015) indicate that the joint constraint reduces the

diffusion search space from fully three-dimensional to nearly one-dimensional, with the free head

locations concentrated along a curve. How does this effect influence the stepping behavior of

Figure 5. Changes in the full step distribution, including leading and trailing leg contributions, under backward load. (A) Distributions for zero force

F = 0 pN (solid line), sub-stall force F = 1 pN (dashed line), stall force F = 1.9 pN (dot-dashed line), and super-stall force F = 2.5 pN (dotted line). The

peaks near 72 nm, 0 nm and – 72 nm correspond to forward steps, stomps, and backward steps respectively. Applying force shifts the forward step

distribution backward slightly (by about 1 actin subunit) and increases the probability of stomps and backward steps. (B) Normalized forward step

distributions for F = 0 pN, F = 1 pN, and F = 1.9 pN. Even when other kinetic pathways are dominant the shape of the forward step distribution

remains robust to load force.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Robust forward step distributions from Brownian dynamics simulations.
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myosin V? One might expect that restricting the search space would affect both mean binding times

and the step distributions.

Let us first consider the subject of binding times. As discussed above, binding in the model is

more complex than just waiting for the head to diffuse within the capture radius a of a binding site

on actin. For the trailing leg, successful binding cannot occur until the head has hydrolyzed ATP and

undergone the recovery stroke. Thus the mean timescale for ATP hydrolysis, th, sets the lower bound

on the mean binding time. After the recovery stroke, if the trailing leg diffuses near one of the back-

ward (n<0) binding sites, the probability of binding is reduced by a factor b<1 because the post-

recovery-stroke head is not in an orientation that favors backward binding. Since polymer relaxation

is fast between capture attempts, in effect this approximates partially absorptive reaction kinetics

(Šolc and Stockmayer, 1971): the post-recovery-stroke head must make on average 1=b diffusive

excursions near an n<0 site before it is captured. The net result of these two constraints, as derived

in Appendix 1, is that the mean binding time for the trailing leg is:

tT ¼ r�1

T þ th; where rT ¼
X

n

bnðtnfpÞ
�1: (8)

Here, bn ¼ b for n<0, bn ¼ 1 for n>0. In contrast, if one is interested in the mean time for the head

to diffuse within a distance a of any of the binding sites, this is given by tdiff ¼
P

nðtnfpÞ
�1

h i�1

(irrespec-

tive of whether it is a trailing or leading head). Figure 6 shows tT versus tdiff as a function of applied

force F, and we always see tT>tdiff , as expected from the above constraints. For small F the trailing

leg kinetics is dominated by forward steps. tdiff<th in this regime, but even though the head can dif-

fuse rapidly to forward binding sites, it does not bind until hydrolysis occurs. As the force is

increased toward the stall regime, trailing leg stomps become the dominant pathway. The mean

binding time tT increases by an order of magnitude, from about 1.6 ms at F¼ 0 to a peak of 25 ms

at F ¼ 1:8 pN. This is because the force biases the system toward backward binding sites (trailing leg

stomps), but binding to those sites requires multiple diffusive attempts even after hydrolysis has

occurred, because of the head orientation.

This increase may be reflected in an interesting experimental observation. Veigel et al. (2002)

used an actin filament attached to beads in an optical trap, and studied the interactions between

individual myosin V motors and the filament. By sinusoidally oscillating one bead (and hence the fila-

ment) they could use the amplitude of the resulting fluctuations to determine the stiffness of the

motor-actin complex over time. Intervals of reduced stiffness were interpreted as times when only

0.0 0.5 1.0 1.5 2.0
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Figure 6. Myosin V timescales as a function of F, the backward load force. tdiff is the mean timescale for the

detached head to diffuse within radius a of any of the actin binding sites. tT and tL are the mean times for the

trailing and leading heads to bind after detachment. For comparison, th is the mean timescale of ATP hydrolysis.
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one head was bound, and hence the unbound head is undergoing a diffusive search. At low loads

(F<1 pN) these intervals averaged around ~18 ms, while at near-stall loads the intervals lasted for

hundreds of milliseconds. This order of magnitude relative increase is consistent with our prediction

for tT as a function of F, with the interpretation that what they were observing at high loads was pri-

marily trailing head stomping. The absolute timescales in the experiment are larger than in the the-

ory (for example the predicted tT = 1.6 ms at F ¼ 0 versus the experimental value of ~18 ms), but

this is likely due to the fact that the sinusoidal forcing (at 75 Hz with peak-to-peak amplitude 250

nm) is a substantial perturbation to the system that makes it harder for the head to bind (hence

increasing mean binding times). However the relative increase of the binding times with force is cap-

tured by our model. Other experiments, where a gold nanoparticle is attached to one of the motor

legs (Dunn and Spudich, 2007; Andrecka et al., 2015), have found binding timescales on the order

of tens of milliseconds in the low load regime. Here there is another experimental artifact in play: as

discussed in Hinczewski et al. (2013), the drag from the gold nanoparticle can substantially increase

diffusion times, with tT becoming much larger than th at F ¼ 0 because of slow diffusion.

To complete the description of the binding times, we note that the situation after leading leg

detachment has several differences. Because the ADP molecule is retained, ATP hydrolysis is not

necessary for rebinding, and the post power stroke orientation of the head favors backward rather

than forward sites (with the latter penalized by a factor of b). The resulting leading leg mean binding

time tL is:

tL ¼ r�1

L ; where rL ¼
X

n

b�nðtnfpÞ
�1: (9)

At small loads the primary pathway for the leading leg is stomping. Since the head orientation

necessitates multiple diffusive attempts to rebind for leading stomps, tL is much larger than tdiff for

small F, as seen in Figure 6. At larger loads backward stepping becomes the dominant pathway

after leading leg detachment, and the combination of the backwards force and the favorable head

orientation makes backward stepping nearly diffusion-limited, with tL approaching tdiff .

Figure 7. Forward step distribution width (solid lines) and mean binding time after trailing leg detachment

(dashed lines) for F ¼ 0 as a function of the inter-leg constraint strength �c. We carried out this calculation for

�p ¼ 83
� (the value used throughout this paper) as well as �p ¼ 65

� and 95
�. As the constraint is increased the step

distribution narrows, while changes in the binding time are relatively small.
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Figure 8. Load-dependent aspects of myosin V dynamics. (A) Backward-to-forward step ratio Pb=Pf ; (B) mean run

length zrun; (C) mean run velocity vrun. Analytical theory results are drawn as curves, experimental results as

symbols. The legend symbols are the same as those in Hinczewski et al. (2013), for ease of comparison, but the

theory curves have been updated.

Figure 8 continued on next page
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Based on the above discussion of binding times, we can guess that the effect of the structural

constraint �c might be relatively limited: while �c does indeed affect the diffusive search space, for

forward stepping at low loads the binding timescale is dominated by the ATP hydrolysis time th.

Despite the fact that increasing �c restricts the search space (and hence potentially makes diffusion

faster), we find that tT at F ¼ 0 does not substantially decrease and can increase depending on the

preferred inter-leg angle (Figure 7, dashed lines). While adding the constraint makes it easier to find

a few target binding sites, it simultaneously makes it harder to find other sites, so that the overall

change in binding time is small. Furthermore, we emphasize that head detachment (not the binding

time) is the rate limiting action in the stepping cycle at low loads. Thus, the mean binding time only

influences the motor dynamics indirectly, through determination of the mean number of steps taken

before complete dissociation. To have any impact on motor performance, the mean binding time

would have to decrease more substantially than we have found here.

So if the timing of the steps is not significantly affected, what about the step distributions? We

computed these for several values of �c and found that increasing the joint constraint energy nar-

rowed the distributions. Figure 7 (solid lines) shows the standard deviation of the forward step dis-

tribution sstep as a function of �c for preferred inter-leg angle �p ¼ 83
� (the value used in above fits),

65˚, and 95˚. The standard deviation decreases, independent of angle preference, by approximately

0.1 nm per kBT of constraint energy. The constraint therefore plays a role in improving the consis-

tency with which steps are made to a particular few target actin binding sites near the half helical

length.

Finally, we conjecture that the joint constraint may also play a role in obstacle avoidance inside

the crowded confines of a cell. Our diffusion contours (Figure 3, Figure 3—figure supplement 1,

Figure 3—figure supplement 2) indicate that in the constrained diffusion model, the free head is

significantly closer to the actin filaments throughout the diffusion. We believe that crowding could

further restrict the conformational space explored by the free head, thus resulting in an even nar-

rower step size distribution in vivo. Myosin V procession in the presence of obstacles would be an

interesting topic for future study.

Load dependence: step ratio, run length, and run velocity
For our final test of the constrained diffusion model we compare theoretical predictions to experi-

ments on the load dependence of the forward-backward step ratio, the mean run length, and the

mean run velocity (Figure 8). To fit the load dependence data, we require that the stall force and

zero force run length agree with experimentally determined values, as further described below. This

is achieved by varying the power stroke effectiveness T , the binding penalty b, and capture radius a.

All other parameters were held fixed as determined by experimental data or fitting the step distribu-

tions. As noted previously, we alternate between fitting the step distributions and force dependence

to achieve optimal agreement between the theory and experiments.

Step ratio
The backward-to-forward step ratio is defined as Pb=Pf , where Pb ¼ 1=ð1þ gÞ

P

n<0 Pn
L is the proba-

bility of taking a backward step and Pf ¼ g=ð1þ gÞPn>0 Pn
T is the probability of taking a forward

step. The step ratio measured by Kad et al. (2008) exponentially increases for large load force as

the myosin transitions from forward to backward stepping. The step ratio Pb=Pf ¼ 1 at F ¼ 1:9 pN,

when forward and backward steps are equally likely.

For the full range of physically reasonable parameters, we find that the force at which the step

ratio is one is nearly identical to the stall force (defined as the force for which the run length

zrun ¼ 0). Therefore, as part of our fitting process, we require the stall force be Fstall = 1.9 pN. This

value is within the range measured in other experiments. The agreement between the stall force and

Figure 8 continued

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Load-dependence of step ratio, run length, and run velocity is captured by the free

diffusion model.
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the force at which the step ratio is 1, is a consequence of the symmetry between the forward and

backward step distributions shown in Figure 5A.

Interestingly, for intermediate forces beginning around F » 1 pN, there is a small increase in the

step ratio before the exponential divergence near the stall force. We find that this effect is due to

the binding penalty and only occurs for b <
~

0:1. Taking b ¼ 0:045, the step ratio predicted by the

model agrees well with the experimental data as shown in Figure 8A.

Run length
The run length is the distance travelled by the myosin V along the actin in a given run. By averaging

over the step distribution (Equation 6), we compute the mean run length,

zrun ¼
1

2

P

n znPðznÞ
Ptð1�PtÞ

; (10)

where Pt is the termination probability and zn ¼ nDz=2 as above. In this expression the numerator is

the mean step size while the denominator accounts for the mean number of steps occurring in a run

and normalization of the distribution PðznÞ. In Appendix 1 we show that the mean number of steps is

hNruni ¼ 1=Pt. Finally, the factor of 1/2 accounts for the fact that the center of mass of the myosin

moves half the distance of the head domain in a given step.

Experimental estimates, mostly performed with zero load force, report mean run lengths in the

range 0.7 – 2.4 mm , with the large variation likely due to measurement conditions (Sakamoto et al.,

2000; Baker et al., 2004; Pierobon et al., 2009). We choose a representative value zrun ¼ 1:3 mm

for fitting the model. With this choice, the computed run length under force also is in reasonable

agreement with measurements by Clemen et al. (2005) as shown in Figure 8B.

Run velocity
The mean run velocity is vrun ¼ zrun=trun, where trun is the mean time elapsed during a processive run.

In Appendix 1, we find

trun ¼
P

nPn
T

Ptð1�PtÞ
ð g

1þ g
td1 þ tTÞþ

P

nPn
L

Ptð1�PtÞ
ð g

1þ g
td1 þ tLÞ; (11)

where the mean trailing/leading binding times tT and tL are given by Equations 8 and 9. The other

timescale in this expression twait ¼ gtd1=ð1þ gÞ is the mean waiting time between detachment events.

Each time is weighted by the respective probability of occurrence and the mean number of steps

taken.

The theoretical mean run velocity agrees well with the experimental data shown in Figure 8C. In

addition to fitting the drop to zero run length at the stall force, our model also captures the gradual

decrease in run velocity at low forces ( <
~

1pN), which is due to small backward shifts in the step distri-

bution under load. This effect is not seen in the previous simplified model in which only half-helical

steps were considered. We also compare to the large force measurements of Gebhardt et al.

(2006), which observed myosin V walking backward with velocity » 90 nm/s under 3 pN backward

force. This experiment was performed at 1 mM ATP concentration, which lowers the ATP binding

rate and associated trailing leg dissociation rate. Therefore, for this comparison we set td1 = 2.2 s—1

as estimated from experimental kinetics (Hinczewski et al., 2013; Gebhardt et al., 2006). The low

ATP run velocity is shown as the dashed curve in Figure 8C. The backward velocity under 3 pN force

is comparable, though slightly smaller than the measured value. This small discrepancy, as well as

disagreement with high force data (at 5 and 10 pN force), is likely due to additional kinetic pathways

in the super-stall regime, such as the power stroke reversal discussed above.

Robust procession under off axis loads
While we have focused on verifying the consistency of structurally constrained diffusion with the full

range of experiments, our model also provides a fast analytical framework for studying complex

behaviors of myosin V. As an example, we consider procession under off-axis load forces, which are

not parallel to the axis of the actin filaments. Off-axis loads are likely especially relevant in vivo where

the myosin navigates a crowded environment.
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Experiments by Oguchi et al. (2010) measured the distance myosin V walked against off-axis

loads applied by a bead in an optical trap. To apply the off-axis force, the actin was attached to a

glass stage which was shifted perpendicularly to the actin axis after the myosin had taken two steps.

For forces that were approximately ±25˚ off-axis on average, the myosin walked slightly further

(~10 nm on average) than under backward force. The force at termination as well as the on-axis com-

ponent of the termination force were also larger for off-axis loads. We emulated these experiments

using Monte Carlo simulations, adjusting the load force after each step or stomp based on the dis-

tance from the starting location and shifting the force off axis after two steps. The average simulated

run length and termination force each increased under off-axis loads (not shown), agreeing qualita-

tively with experiments.

We also directly compute the mean run length under a constant 1 pN load using Equation 10 for

a large range of off-axis forces parameterized by the spherical angles �F and fF. The percent differ-

ence between the run length with off-axis force ð�F;fFÞ and the run length under backward force is

shown in Figure 9. Our model estimates that at worst, changing the direction of a constant load

force can decrease the run length by ~15%, while many off-axis directions lead to considerable

increases in run length. The shortest run length for 1 pN force occurs at ðfF ¼ 0, �F » 20
�Þ. This par-

ticular �F is slightly larger than that (�F » 6
�) which maximizes the effective constraint angle

�0c ¼ arctanðx̂ � û0c=ẑ � û0cÞ, but has a larger T 0, which strengthens the preference for locations along

the constraint direction so that diffusion to forward actin sites becomes more difficult. The competi-

tion between these two effects leads to the minimized run length. For fully off-axis force (fF ¼ �90
�,

�F>0), all run lengths are larger than those under backward force. These results further corroborate

the robust processivity of myosin V under off-axis loads observed experimentally by Oguchi et al.

(2010).

Figure 9. Myosin V run length under off-axis forces. Shown is the percent change in run length from that under

backward force zrunð�F ;fFÞ=zrunð0; 0Þ � 1 computed using Equation 9. In the worst case (�F » 20
�;fF ¼ 0) the run

length is decreased by ~ 15%. The run length most dramatically increases under fully off-axis forces

(�F>0;fF ¼ �90
�).
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Discussion

Constrained versus free diffusion: simplified effective theories
Our theoretical analysis presented above largely supports the constrained diffusion hypothesis. The

z� x diffusion contour produced by the constrained diffusion model closely resembles that mea-

sured by Andrecka et al. (2015) and we find strong quantitative agreement between the model pre-

dictions and experimental data for zero force step distributions and force dependence of the step

ratio, run length, and run velocity. While this evidence is convincing, we emphasize that with rela-

tively minor parameters changes the free diffusion model also makes similarly accurate predictions,

with the exception of the diffusion contours. As is particularly apparent from comparison of the z� x

and y� x projections (Figure 3—figure supplement 2), free diffusion doesn’t produce multi-peaked

distributions, implying that the freely rotating myosin explores the entire three dimensional space,

contrary to the results of Andrecka et al. (2015). With respect to other experiments, however, the

free diffusion model performs favorably, agreeing with step distribution and force dependence data

nearly as well as the constrained diffusion model (see Figure 4—figure supplement 1 and Fig-

ure 8—figure supplement 1).

The similarity between the predictions of the constrained and free diffusion models can be

explained through further analysis of the diffusion contours close to the actin. While the global diffu-

sion patterns are very different from one another, close to the actin they look quite similar. There-

fore, both the one-dimensional path under constrained diffusion and the full three-dimensional

exploration under free diffusion favor binding to similar actin sites, namely those near the half-helical

length of actin. This means that the free diffusion model accurately describes both step distributions

and force dependence behavior. Since the diffusion time scale is much smaller than the head detach-

ment time, the run velocity as a function of force is also quite similar between models.

The similarity between the free and constrained diffusion model predictions for on-actin behavior

indicates that experimental measurements of such quantities (step distributions, run length, etc.)

cannot effectively discern the true structure of the myosin V joint. The diffusive search, however, is

dramatically influenced even by a small joint structural constraint. Therefore, to further probe the

presence and consequences of structural constraints, experiments should directly measure the free

leg diffusion. In particular, the y� x projection of the diffusion shows particularly stark contrast

between the constrained and free diffusion models. This contour corresponds to imaging the myosin

from the front along the axis of the actin.

While our analysis and the most recent experiments suggest that myosin V has structurally con-

strained diffusion, the free diffusion model is still useful as a simplified effective theory for stepping

behavior on the actin filaments. The precise values of physical parameters likely cannot be accurately

determined with the free diffusion model, but extrapolation from fits to existing experimental data

allows for valuable behavioral predictions. Both the free and constrained diffusion models can con-

tribute to our understanding of the function of myosin V in complicated environments, for instance

with off-axis load forces (see above). In fact, previous work (Hinczewski et al., 2013), indicates that

the force dependence of average quantities, such as the forward step probability, step ratio, or run

length, are well described by a further simplified model that only allows steps to the half-helical actin

sites. Such a model cannot describe step distributions, but does contribute to our understanding of

myosin V’s resilience under backward force and robust motility under perturbations to structural

parameters. Since our computed and simulated diffusion contours indicate a similarity between the

constrained diffusion model and simplified free diffusion models near the actin, the latter remain

quite useful for studying certain behaviors of myosin V.

Conclusion
We have developed a comprehensive low-force model of myosin V, incorporating the polymeric

nature of the lever arms, the joint angle preference which gives rise to a structurally constrained dif-

fusive search, and the full set of kinetic pathways involving all actin binding sites. The analytical

model allows us to compute bounds on the joint constraint energy and captures experimental results

for step distributions and the force dependence of the step ratio, run length, and run velocity. While

our results are largely in support of the constrained diffusion hypothesis, the theory also provides

insight about how simplified models (eg. free diffusion) can provide a useful analytical description of
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some myosin V behaviors. Finally, using the model we can make predictions about experimentally

measurable quantities including stomp distributions and robust run length under off-axis forces. To

conclude we discuss limitations and potentially interesting extensions to the model for future

studies.

Throughout the present study, we have assumed that myosin V walks along a single static actin fil-

ament. In reality, the many actin filaments within a cell can come together forming crossing and

branching network structures (Pollard et al., 2000). Furthermore, bending and rotational fluctua-

tions of the actin also occur and have been characterized experimentally (Egelman et al., 1982). A

recent study observed myosin V walking on actin rafts (Bao et al., 2013), while fluctuations have

been considered in previous theoretical work on step distributions (Vilfan, 2005b). New actin geom-

etries and fluctuations could be easily incorporated in our model by convolving the distribution of

actin binding site locations with the distribution for the position of the free myosin head.

One regime in which our model fails is under very large super-stall loads. In particular, the large

backward run velocity measured by Gebhardt et al. (2006) at 5 pN and 10 pN backward force are

not captured by the model. This alternative behavior is likely due to the power stroke reversal noted

above and observed in experiments (Sellers and Veigel, 2010), which would promote more fre-

quent large backward steps. It is also likely that under such extreme forces the detachment rates of

the myosin heads are altered. By adding new power stroke reversal kinetic pathways, we expect our

model to better capture the large force behavior of myosin V.

Finally, our methods may be more broadly applied to the large class of processive molecular

motors that operate through the combination of chemical reactions and a diffusive Brownian search.

Of particular interest are myosins VI and X, which operate through a similar set of kinetic pathways,

but have heterogenous lever arms with both stiff and flexible components (Sun and Goldman,

2011). Perhaps applying our approach can resolve the controversy over the conformation of the

myosin VI lever arm (Spink et al., 2008; Mukherjea et al., 2009; Thirumalai and Zhang, 2010).

Beyond the myosin superfamily, we anticipate our approach may also prove useful for understanding

kinesin and dynein motors as well as other biomolecules that can be suitably modeled by fluctuating

polymer chains.

Materials and methods
The theoretical methods used above are fully described in Appendix 1, while the details of the Brow-

nian dynamics simulations are in Appendix 2.
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Appendix 1

In this appendix we develop the analytical theory of myosin V. In the first two sections, we

define the actin geometry and solve the first passage problem for binding to sites along the

actin double helix. From this we derive step distributions, the backward-forward step ratio, the

mean run length, and the mean run velocity. This analysis is quite general: it applies to any

actin-based motor with a similar mechanochemical cycle, assuming one can compute the

equilibrium probability density for the positions of the free head during diffusion. In later

sections, we compute this probability density for myosin V, incorporating effects of an inter-

leg constraint potential, volume exclusion, orientation requirements for binding, and load

force. The combined result gives a complete diffusion-informed kinetic description of myosin

V.

Actin geometry
The actin double helix is composed of two filaments each containing 13 actin monomers per

helical rotation. As it walks, the myosin heads can bind to any monomer along the actin strand.

As discussed in the main text, the geometry of the actin helix is given by

rn ¼ Rðcosfn � 1Þ x̂þR sinfn ŷþðn=2ÞDz ẑ; (12)

where R = 5.5 nm is the radius of the helix, Dz¼ 72=13»5:5nm is the size of each actin

monomer, and fn ¼�12pn=13 is the angle between adjacent monomers (Lan and Sun, 2006).

Even and odd n respectively designate the positions of monomers on the 1st and 2nd filament

of the double helix. In the following analysis, we assume the bound leg is attached to the n¼ 0

at position (0, 0, 0) on the first filament. Our work is a generalization of that by

Hinczewski et al. (2013), in which only the half helical binding sites r�13 (z¼�36nm) were

considered.

First passage time analysis
We begin by applying first passage time analysis to derive the stepping and stomping

probabilities at each binding site along the actin. The first passage time of the free myosin leg

to a given binding site along the actin rn is approximately,

tnfp »
1

4paDhPðrnÞ
; (13)

where a¼ 0:4 nm is the capture radius around the actin binding site, Dh = 5.7 � 10–7 cm2/

s is the diffusion constant of the myosin V head, and PðrnÞ is the equilibrium probability

distribution for the free myosin head evaluated at the actin binding site r̂n. For a detailed

calculation of this result using the renewal approach (Van Kampen, 2007), see

Hinczewski et al. (2013). The accuracy of this approximation relies on the assumption that

ta ¼ a2=Dh »0:18ns, the time scale describing the diffusion of the myosin head a distance a,

is much less than the relaxation time of the myosin polymer legs tr ~Oð1�sÞ which was

calculated by Hinczewski et al. (2013) using Brownian molecular dynamics simulations

(Ermak and McCammon, 1978).

The actin binding sites are located on the outer surface of each actin subunit. As

discussed in the main text, we therefore require that the orientation of the free leg,

defined in terms of its azimuthal orientation ff , must be similar to that of the target actin

binding site. Thus, for the description of binding events, we use the joint density

Pðrn; df1>ðff þ pÞ � fn>� df2Þ. The two angles ðdf1; df2Þ define a (possibly asymmetric)

acceptance region, that is the deviations from the actin orientation fn ¼ �12pn=13 for

which the head can still bind. The mean first passage time of the free head to a given

binding site with the correct orientation is therefore,
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tnfp »
1

4paDhPðrn;df1>ðff þpÞ�fn>� df2Þ
: (14)

This expression is used below in our derivations of physical observables for myosin V,

connecting these quantities to mechanical properties of the polymer myosin lever arm.

While in the waiting state, both myosin heads are bound to the actin with ADP. The myosin

can initiate a diffusive search through two kinetic pathways: (I) ADP is released from the

trailing head (TH) and replaced by ATP, releasing the head from the actin, (II) the leading head

(LH) detaches from the actin without ADP release. In the second scenario, dissociation of the

LH occurs at a rate t�1

d2 much less than t�1

d1 , the rate of ADP release/ATP binding in the first

scenario. The probability of (I) and (II) occurring are then gð1þ gÞ�1 and ð1þ gÞ�1 respectively,

in terms of the gating parameter g ¼ td2=td1 � 1.

After the TH is released, it must hydrolyze ATP to execute the recovery stroke, which

occurs at the rate t�1

h . The free leg then diffusively searches for a binding site, reaching the

capture radius of the nth site with rate ðtnfpÞ
�1. Because the recovery stroke orients the myosin

head to favor forward binding, we implement a binding penalty b<1 for sites behind the

leading leg (n<0) designating the probability of binding once the site is reached. The binding

penalty at site n is denoted by,

bn ¼
b; n<0

1; n>0:

�

(15)

With this definition, the effective diffusion/binding rate to each site is bnðtnfpÞ
�1. Given the

first passage times to each of the binding sites, we can calculate the distribution of free leg

binding times to the rn site,

f nT ðtÞ ¼
Z t

0

dt0 t�1

h e�t0=thbnðtnfpÞ
�1
e�ðt�t0ÞrT

¼ bn
e�rT t � e�t=th

tnfpð1� rT thÞ
;

(16)

where rT ¼
P

n bnðtnfpÞ
�1. Here the sum is over all binding sites which the myosin head can

reach, that is those sites with jrnj<2L, where L is the length of the myosin arms. The integral in

Equation 16 is the convolution of the probability of hydrolysis occurring by some time t0 and

the probability of binding to the actin site over the interval time interval t� t0. These individual

probabilities are modeled as exponential random variables with rate constants given by ðthÞ�1

and bnðtnfpÞ
�1 respectively. The overall probability of binding to site n given trailing head

dissociation is:

Pn
T ¼

Z

¥

0

dt e�t=td1 f nT ðtÞ ¼
bnt

2

d1

tnfpð1þ rT td1Þðtd1þ thÞ
; (17)

where the exponential term implements the constraint that the free head must find a binding

site before the bound head dissociates. From Equation 16 we can also see that the average

time to bind tT is independent of target site:

tT ¼
R

¥

0
dt tf nT ðtÞ

R

¥

0
dt f nT ðtÞ

¼ r�1

T þ th: (18)

The diffusive search of the LH is analogous with the following changes: (1) The LH retains its

ADP molecule, so ATP hydrolysis is not required, (2) the LH is in the post power stroke

orientation and favors binding to backward sites, behind the bound trailing leg. Thus, we

obtain the LH binding probability and mean binding time by substituting th ! 0, bn ! b�n, rT !
rL ¼

P

n b�nðtnfpÞ
�1 in the above equations,
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Pn
L ¼

b�ntd1

tnfpð1þ rLtd1Þ
tL ¼ r�1

L :

From the two distributions, Pn
T and Pn

L, we can calculate the probabilities of each kinetic

pathway. The probability of forward steps, trailing stomps, leading stomps and backward

steps are respectively

Pf ¼
g

1þ g

X

n>0

Pn
T ; PTs ¼

g

1þ g

X

n<0

Pn
T ;PLs ¼

1

1þ g

X

n>0

Pn
L; Pb ¼

1

1þ g

X

n<0

Pn
L;

where the factors gð1þ gÞ�1 and ðgþ 1Þ�1 account for the probability of trailing versus leading

head detachement. The final pathway is termination, in which the free leg cannot complete its

diffusive search before the bound leg detaches, leading to complete dissociation of the

myosin from actin. The termination probability is simply, Pt ¼ 1�Pf �PTs �PLs�Pb.

For comparisons to electron microscopy experiments (Oke et al., 2010), we require the

distribution of head separation distances. The probability of observing bound myosin with n

actin subunits between the head is just the probability of taking a step/stomp of size n. This

probability has contributions from each of the four primary kinetic pathways,

Pn
dist ¼

g

1þ g
ðPn

TþP�n
T Þþ 1

1þ g
ðPn

LþP�n
L Þ; n>0: (21)

The full step size distribution, measured by florescence imaging experiments (Yildiz et al.,

2003; Sakamoto et al., 2005), is then the convolution of the binding distribution Pn
T with Pn

dist.

This gives,

PTðznÞ ¼
X

m>0

Pm
distPn�m

T ; (22)

where zn ¼ nDz=2 and Dz is the size of the actin monomers. Similarly, before the release of the

LH, the distances are distributed according to Equation 21, but now the distance to the

bound TH is negative, so substituting Pm
dist !P�m

dist and summing over negative m, the full step

size distribution for the leading head is given by,

PLðznÞ ¼
1

1þ g

X

m<0

P�m
distPn�m

L : (23)

For comparison to experiments, we only consider the trailing leg portion of step

distribution, PTðznÞ, which we normalize appropriately. The combined leading and trailing leg

step distribution, however, allows us to study the intricate changes in forward and backward

steps/stomps in response to an applied load force. This behavior is highlighted in Figure 5 in

the main text. The required distribution is

PðznÞ ¼
g

1þ g
PTðznÞþ

1

1þ g
PLðznÞ; (24)

where again trailing leg and leading leg events are weighted by the gating ratio. This

distribution will also allow us to accurately calculate run length and velocity, accounting for the

full distribution of step sizes and possibility of forward or backward motion due to stomping.

Given the termination probability Pt of each diffusive search, the average number of steps

taken is then
P

¥

n¼1
nð1� PtÞn�1Pt ¼ 1=Pt. Each step of size nDz=2 occurs with probability

PðznÞ=ð1� PtÞ. The total run length is defined as the change in position of the center of mass

of the myosin, which is half the change in position of the free leg. Summing over all step sizes,

we obtain

zrun ¼
Dz

P

n nPðznÞ
4Ptð1�PtÞ

: (25)

The average run velocity is defined as vrun ¼ zrun=trun, where trun is the average runtime.
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Before release of the TH or LH, the average waiting time bound to the actin is

td1td2=ðtd1 þ td2Þ ¼ gtd1=ð1þ gÞ. After release, the mean binding times of the TH and LH are tT

and tL respectively. The contributions of these times to the average run time is weighted by

the sum of the TH/LH binding probabilities,

trun ¼
P

nPn
T

Ptð1�PtÞ
ð g

1þ g
td1 þ tTÞþ

P

nPn
L

Ptð1�PtÞ
ð g

1þ g
td1þ tLÞ: (26)

Equilibrium probability of the free myosin head
The mean first passage time, tnfp used in the preceding analysis relied on knowledge of the free

leg equilibrium probability distribution, PðrnÞ evaluated at actin site n. In this section we derive

the general equilibrium probability PðrÞ for an arbitrary position r. Projection of this

distribution onto, for instance, the x� z plane, gives a diffusion contour, like that measured by

Andrecka et al. (2015). Data from this experiment indicate that there may be an inter-leg

joint potential HJ constraining the diffusion of myosin V. The precise form of the potential is

discussed later, but we assume it is only a function of the inter-leg angle, or equivalently r̂f � r̂b,
where rf and rb are the end-to-end vectors for the free and bound legs. We also include a

volume exclusion potential to capture the effects of steric repulsion between the myosin legs.

Volume exclusion effects give rise to an effective repulsion between the bound and free heads

given by the potential HV ¼ kBTðdV=rÞ6, where r is the distance between the bound and free

heads and dV is the effective length scale of the repulsion (see main text for more details). The

probability can be obtained from the convolution of the end-to-end probability of the bound

leg, PbðrbÞ with that of the free leg Pf ðrf Þ, while accounting for the joint potential and volume

exclusion through the appropriate Boltzmann factors,

PðrÞ ¼ Ae�ðdV=rÞ6
Z

drb

Z

drf PbðrbÞPf ðrf Þe�bHJ ½r̂f �r̂b� dðr� rb � rf Þ; (27)

where the constraint r¼ rb þ rf is enforced with the d-function and b¼ 1=ðkBTÞ. Due to the

volume exclusion term and because the joint constraint is a non-uniform weight in the

convolution, we also require an overall normalization constant A. Each leg is modeled as a

inextensible polymer with length L and persistence length lp, and as noted above, the bound

leg is assumed to be fixed at the origin r¼ 0.

The free leg end-to-end equilibrium probability may be accurately approximated using

polymer mean field theory (Thirumalai and Ha, 1998),

Pf ðrf Þ ¼ Af �
�9=2
f exp ð� 3k

4�f
Þ; (28)

where k¼ L=lp, �f ¼ 1� r2f =L
2, and Af is a normalization constant. Because the polymer is

inextensible the dimensionless parameter, �f is constrained to be between 0 and 1. The end-

to-end vector rf and be fully specified using �f as well as polar and azimuthal angles, �f and ff .

The normalization of the distribution then requires

L3

2

Z

1

0

d�f ð1� �f Þ1=2
Z

1

0

d cos�f

Z

2p

0

dffPf ðrf Þ ¼ 1; (29)

which gives the normalization constant

Af ¼
9

ffiffiffi

3
p

e3k=4k7=2

8p3=2L3ð3k3 þ 12kþ 20Þ : (30)

For stiff polymers (k»0) relevant to myosin V, the distribution approximates a delta function

at rf ¼ L. In the flexible regime (k� 1), which may accurately describe motors with flexible

components, the distribution becomes a spherically symmetric Gaussian centered at r¼ 0.
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The bound leg is assumed to be constrained in some direction ûc by the power stroke. The

tangent vector of this leg at the origin û0 is therefore subject to a harmonic constraint with

energy Hc ¼ 1

2
kBTncðû0 � ûcÞ2, where there parameter nc is the strength of the constraint. This

constraint biases the probability in the direction of ûc. We assume this effect is captured by

the following ansatz:

PbðrbÞ ¼ Ab�
�9=2
b exp ð� 3k

4�b
þT ûc � r̂bÞ; (31)

where �b ¼ 1� r2b=L
2, Ab is a normalization constant, and T is a function of nc satisfying T ¼ 0

when nc ¼ 0 so that in the limit of no constraint, the distribution reduces to that of a free leg.

With this addition, the normalization constant becomes

Ab ¼ Af

T
sinhT : (32)

The function T was determined in Hinczewski et al. (2013) by matching the moments of

this distribution to the exact moments for a semiflexible polymer under harmonic constraint. In

the limit that k� 1 and nc � 1 (large stiffness and strong constraint), the result is

T »1þ 20nc

20þ 7knc
: (33)

With the two probability distributions Pf ðrf Þ and PbðrbÞ, we can now evaluate the

convolution in Equation 27,

PðrÞ ¼ Ae�ðdV=rÞ6AfAb

R

drb
R

drf �
�9=2
f �

�9=2
b dðr� rb� rf Þ

�exp ð� 3k
4�f

� 3k
4�b

þT ûc � r̂b �bHJ ½r̂f � r̂b�Þ

¼ Ae�ðdV=rÞ6AfAb

Z

drf �
�9=2
f �

�9=2
b exp ð� 3k

4�f
� 3k

4�b
þT ûc � r̂b�bHJ ½r̂f � r̂b�Þ:

(34)

In the second line we integrate over the bound leg vector rb with the delta function

constraining rb ¼ r� rf so that

�b ¼ 1�
r2 þ r2f � 2rrf cosð�f Þ

L2
; r̂b ¼

rr̂� rf r̂f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ r2f � 2rrf cos�f
q ; (35)

where �f is the angle between the free leg end to end vector rf and the target position r.

The bound leg is constrained by the harmonic potential to the constraint direction, ûc,

which has angular representation ð�c;fc ¼ 0Þ with respect to the z-axis. To proceed, however,

we consider the axis along the direction r̂. With respect to this axis, we can represent the unit

vectors r̂f and ûc by their polar and azimuthal angles ð�f ;ff Þ and ð~�c; ~fcÞ. Then we may write

the dot products as,

ûc � r̂b ¼
r cos ~�c � rf ½cos�f cos ~�c þ cosðff � ~fcÞsin�f sin ~�c�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ r2f � 2rrf cos�f
q (36)

and

r̂f � r̂b ¼
r cos�f � rf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þ r2f � 2rrf cos�f
q : (37)

The integration element is then drf ¼ r2f drf d cos�f dff and after integrating over ff ,

Equation 34 becomes
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Pðrr̂Þ ¼ 2pAAfAb

Z L

0

r2f drf

Z

1

�1

d cos�f �
�9=2
f �

�9=2
b exp � 3k

4�f
� 3k

4�b
þT z

r� rf cos�f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ r2f � 2rrf cos�f
q

0

B

@

1

C

A

�exp �bHJ ½
r cos�f � rf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ r2f � 2rrf cos�f
q �� dV

r

� �6

0

B

@

1

C

A
I0

T xrf sin�f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ r2f � 2rrf cos�f
q

0

B

@

1

C

A
;

(38)

where T z ¼T cos ~�c and T x ¼T sin ~�c. Performing the change of variables,

rf ! L
ffiffiffiffiffiffiffiffiffiffiffiffi

1� �f
p

cos�f !
r2 þL2ð�b � �f Þ
2rL

ffiffiffiffiffiffiffiffiffiffiffiffi

1� �f
p ; (39)

we see that the main contributions to the integral in the stiff limit k� 1 occur when �f � 1 and

�b � 1. In this limit, the change of variables becomes rf ! L, and cos�f ! r=ð2LÞ with Jacobian

determinant jdetJj ¼ L2=ð4rÞ and upper integration limits u¼ 2r=L� r2=L2. Then Equation 38

becomes

Pðrr̂Þ ¼ L4pAAf Ab

2r

Z u

0

d�f

Z u

0

d�b �
�9=2
f �

�9=2
b exp ð� 3k

4�f
� 3k

4�f
þT zr

2L
Þ

�exp ð�bHJ ½
r2

2L2
� 1�� dV=rð Þ6ÞI0ðT x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2

4L2

r

Þ:
(40)

After transforming back to the z-axis frame of reference, using cos ~�c ¼ r̂ � ûc, the integral

Equation 40 evaluates to,

Pðrr̂Þ ¼ 8pL4AAf Ab

729k7r
ð20

ffiffiffiffiffiffi

3p
p

u5=2e
3k
4uerfcð

ffiffiffiffiffiffi

3k

4u

r

Þþ 3
ffiffiffi

k
p

ð20u2 þ 10ukþ 3k3ÞÞ2

�I0ðT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1�ðr̂ � ûcÞ2Þð1�
r2

4L2
Þ

r

Þe12ðT r�ûc
L

�3k
u
Þe�bHJ ½ r

2

2L2
�1�� dV=rð Þ6 :

(41)

This expression gives an analytical description of the free head diffusion as the myosin

takes a step. Projecting the distribution onto a given plane produces a 2D diffusion contour,

like that measured by Andrecka et al. (2015). Depending on the joint constraint Hamiltonian

and volume exclusion term, the normalization A must generally be determined numerically. If

HJ ¼ 0 and dV ¼ 0, then A¼ 1. In this case and for n¼�13, we have r̂�13 � ûc ¼�cos�c and u»1,

so that the result of Equation 41 reduces to that previously obtained for the half helical

binding sites (Hinczewski et al., 2013).

Joint constraint Hamiltonian
In light of experiments by Andrecka et al. (2015), we use a joint potential HJ with an energy

minimum at a certain preferred angle �p. Instead of a freely rotating joint, this potential has an

energy cost for deviations from �p. Specifically we use the potential,

HJ ¼ �ckBT½1� cosð�J � �pÞ�; (42)

where �c is the dimensionless constraint strength and �J is the inter-leg angle at the joint. As

discussed in the main text, this choice reduces to a harmonic potential when �J »�p. In large

persistence length limit, k� 1, we have cos�J » � r̂f � r̂b. Above we found that in this limit, the

potential becomes HJ ½r̂f � r̂b�»HJ ½r2=ð2L2Þ� 1�. Expanding the cosine in our potential we arrive

at,

HJ ½r2=ð2L2Þ� 1� ¼ �ckBT 1� 1� r2

2L2

� �

cos�p �
r

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2

4L2

r

sin�p

" #

: (43)
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Orientation constraint for binding
The above model gives a description of the myosin diffusion: positions in the three

dimensional space are visited by the free myosin head with probability Pðrr̂Þ. To bind to actin,

the free head must come sufficiently close to a binding size rn and have the correct

orientation, pointing toward the outer surface of actin subunit.

As discussed above, the density relevant for the first passage time to reach a binding site

with the correct orientation is PbindðrnÞ ¼ Pðrn; df1>ðff þ pÞ � fn>� df2Þ. To evaluate this

quantity we repeat the derivation from the previous section, but integrate ff only over the

acceptance region ðfn � df2;fn þ df1Þ. Note we can choose our axes so that ~fc ¼ 0. In

principle we should use ~fn, the azimuthal orientation of actin subunit n with respect to the r̂n

axis. The sites with non-negligible probability of binding, however, have jzj � jxj; jyj, so that
~fn »fn. Carrying out the derivation, we arrive at

PbindðrnÞ ¼
8pL4AAfAb

729k7rn
ð20

ffiffiffiffiffiffi

3p
p

c5=2e
3k
4cerfcð

ffiffiffiffiffiffi

3k

4c

r

Þþ 3
ffiffiffi

k
p

ð20c2 þ 10ckþ 3k3ÞÞ2e1

2
ðT rn �ûc

L
�3k

c
Þ

�e�bHJ ½ r
2

2L2
�1

�

� dV=rð Þ6
Z fnþdf1

fn�df2

dff exp ðcosff T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1�ðr̂n � ûcÞ2Þð1�
r2

4L2
Þ

r

Þ:
(44)

To evaluate this probability the constant A must be calculated numerically and the integral

over ff is computed numerically for each target binding site. This quantity gives us the first

passage times in Equation 14 and allows for computation of step distributions and other

physical observables derived above.

Equilibrium probability of the free myosin head under
load
If we apply a load force F exerted at the end of the bound the myosin leg, the distribution

Equation 31 is multiplied by a factor expðbFrbF̂ � r̂bÞ. This term is simply the Boltzmann factor

describing the energy cost required for the myosin leg to move a distance rb in the direction

r̂b under the load force. Again assuming the stiff limit, (rb »L), this expression becomes

expðbFLF̂ � r̂bÞ. Thus, the load force simply changes the effective constraint direction and

strength, ûc ! û0c and T ! T 0 where

û0c ¼
T ûc þbFLF̂

T 0 T 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T 2 þðbFLÞ2 þ 2T bFLF̂ � ûc
q

: (45)

Making these substitutions in Equation 44, gives the equilibrium free-leg probability of

being at a binding site with the orientation required to bind for myosin V under load force F.
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Appendix 2

Brownian dynamics simulations
In order to explore the dynamics of a myosin motor and explicitly incorporate excluded

volume and other constraints, we used Brownian Dynamics (BD) simulations. In the simulations,

myosin is modeled as a chain of beads of diameter dM = 2 nm. The wild-type myosin V dimer

has two lever arms that include 6 IQ domains each. We model the dimer as a polymer of

N = 35 beads. To study how the lever arm length affects the step size distributions, we

created myosin V models with 4 IQ domains and 8 IQ domains. The models consisted of 25

and 45 beads, respectively.

The Hamiltonian that governs the interactions between the constituent beads of myosin V

and myosin-actin interactions in the BD simulations is given as:

H ¼Hbond þHrepelþHbend þHAM;repelþHAM;bind (46)

The five contributions to the Hamiltonian are listed below. First, the bond potential

between myosin V beads is given as:

Hbond ¼
1

2
ks
X

N�1

i¼1

ðri;iþ1� dMÞ2; (47)

where ri;iþ1 is the center-to-center distance between the beads i and iþ 1. The bond strength

in our simulations is ks = 700 kcal/ mol/ nm2. In practice, ks must be large enough to prevent

the contour length of the polymer from changing significantly. Next,

Hrepel ¼ �
X

N�2

i¼1

X

N

j¼iþ2

dM

ri;j

� �6

(48)

where ri;j is the distance between two beads. This term ensures that there are no unphysical

overlaps between any beads. In the equation above, dM = 2 nm which corresponds to the

diameter of a bead. The potential strength � = 1 kcal/mol.

A similar term, HAM;repel, is included to ensure that a myosin lever arm is sterically repulsed

by the actin filament. For HAM;repel, the potential has the a similar form as Equation 48 with the

parameter, dAM = 5.5 nm (the sum of the radii of a bead and the actin filament) and the analog

to ri;j is calculated as the perpendicular distance from the center of a lever arm bead to the

actin filament.

Actin-myosin binding is given by a screened Coulomb potential,

HAM;bind ¼�V0

�
e�a� (49)

where the potential strength, V0 = 3.3 kcal/mol, the screening length 1=a = 0.5 nm, and � is

the distance between the binding region on the stepping head of myosin V and any actin

binding site. The actin binding region of the myosin motor is located on the surface of the last

bead. We consider myosin bound and a trajectory complete when the binding energy

becomes larger than 2.0 kcal/mol. We ran 200 stepping trajectories for each different setup

we studied. Each trajectory ended when the stepping head was bound at an actin binding site.

The bending potential is given by:

Hbend ¼
X

N�1

i¼1

kbend;iðd2M �~ri;iþ1 �~ri�1;iÞ (50)

where the bending constant, kbend;i is bond specific. Incorporating a heterogeneous bending

constant allows us to create a flexible joint in the middle of the polymer and introduce varying

amount of flexibility throughout the polymer structure. The bending constant is related to the
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persistence length Lp of a polymer as: kbend ¼ LpkBT=d
3

M , where kBT determines the thermal

energy scale. The values of kbend used in the simulations are given in the table below.

Bead sequence number

6 IQ model 4 IQ model 8 IQ model kbend in kcal/mol

1 1 1 150

2 2 2 34.9

3–17 3–12 3–22 23.7

18 13 23 0

19–33 14–23 24–43 23.7

34 24 44 34.9

35 25 45 N/A

Power stroke
The first term in the bending potential, kbend;1ðd2M �~r1;2 �~r0;1Þ, is used to create a power stroke

by including a vector,~r1;0 that makes an angle �c ¼ 65
� with the actin filament. Specifically,

the first term in the bending potential is zero when the angle between the vector created by

the first two beads and the imposed direction is zero; the energy penalty increases as the

attached lever arm direction deviates from the direction imposed by constraint angle, �c. In

practice, a large kbend;1 keeps the bound head in the post-powerstroke orientation.

External force
To analyze the effect of external pulling force, we add a constant force in the �ẑ direction to

the myosin lever arm junction (i. e. the middle bead). The other forces and parameters

remain unchanged.

Joint constraint
To study a model for myosin V that steps in a compass-like motion, we introduce an

additional harmonic constraint between the two beads adjacent to the junction. We report

data where the spring constant of the constraint is 5 kBT/nm
2 and the equilibrium length of

the spring corresponds to a 90˚ angle between the two lever arms.

Glass cover
To investigate the effect of a cover slip (or any other excluded space) on the dynamics of

myosin V dimer, we excluded half of the search space using a soft-core repulsive potential

similar to Equation 48): Hglass ¼ �
PN

i¼1

dC
ri

� �6

. The data reported in this paper was obtained

using dC = 1 nm, � = 5 kcal/mol, and ri is measured as a perpendicular distance from a bead

to the glass plate that is directly under the actin filament in the xz-plane.
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