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1. INTRODUCTION

Understanding semiflexible biopolymers under tension is
relevant both in vivo—determining the mechanical response of
cytoskeletal networks1�3—and in vitro, due to a proliferation of
single-molecule techniques like optical tweezers that involve
manipulating stretched DNA.4�6 Among the basic goals of
current research is to achieve a comprehensive, quantitatively
accurate theory for the dynamical response of a semiflexible chain
prestretched by an external force. For polymers under certain
asymptotic conditions this effort has been highly successful:
where the persistence length lp is much greater than the total
length L, or for a large force F . kBT/lp, we can assume the
polymer contour remains nearly straight, and apply the weakly
bending approximation (WBA).7 This has proven a versatile
approach, useful in both equilibrium7�9 and nonequilibrium10�13

contexts for stretched semiflexible polymers. In the context of
single-molecule experiments, theWBA canwork very well for actin
filaments,14 where the regime L j lp ∼ O(10 μm) is easily
accessible.

However, to complete the dynamical picture, we need a
complementary approach for cases that do not fall within the
weakly bending regime. Away from the asymptotic limit, when
dealing with weaker forces or more flexible chains, we are
confronted by complex crossovers between dynamical regimes
at short times (dominated by backbone rigidity) and those at
larger time scales, where flexible chain modes come into play.
Adding to the complexity is the role of long-range hydrodynamic
interactions between polymer segments. For weakly bending
chains, these can be approximately incorporated by assuming
distinct longitudinal and transverse friction coefficients,ζ )≈ ζ^/2,
appropriate for a rigid rod.11,15,13 This renormalizes time scales,

without affecting the dynamic scaling. (While the assumption of
distinct friction coefficients remains the most common approx-
imation, one can also use a more complicated preaveraging
approach.16) When the chain is not weakly bending, simple
rod-like hydrodynamics is no longer valid, and we need another
method of dealing with the long-range coupling.

The experimental significance of the nonasymptotic regime
has been highlighted by optical tweezer single-molecule applica-
tions involving small stretching forces, F ∼ O(10�1 � 10) pN,
and more flexible polymers like double-stranded DNA, where
lp ≈ 50 nm and the typical strand lengths L ∼ O(102 � 104)nm
J lp.

4�6 In order to quantitatively capture such experimental
setups, we need a theory that bridges the flexible, zero-force
regime of classical polymer approaches like the Zimmmodel,17,18

and the strongly stretched, stiff limit where theWBA is successful
(which in the DNA case when L J lp requires F . kBT/lp ≈
0.08 pN).

The current work focuses on addressing this need, by con-
structing an anisotropic mean-field theory (MFT) for a semi-
flexible chain under tension, including hydrodynamics through a
preaveraging approximation. To verify the theory, we also carry
out extensive comparisons with bead�spring worm-like chain
Brownian hydrodynamics (BD) simulations. The simulation
results for flexible, partially extended chains underscore the
complexity of polymer dynamics in the nonasymptotic case:
quantities like the mean squared displacement (MSD) of the
chain end-point or end-to-end distance show broad crossovers

Received: April 27, 2011
Revised: July 13, 2011

ABSTRACT:We introduce an anisotropic mean-field approach for the
dynamics of semiflexible polymers under intermediate tension, the force
range where a chain is partially extended but not in the asymptotic
regime of a nearly straight contour. The theory is designed to exactly
reproduce the lowest order equilibrium averages of a stretched polymer,
and it treats the full complexity of the problem: the resulting dynamics
include the coupled effects of long-range hydrodynamic interactions,
backbone stiffness, and large-scale polymer contour fluctuations. Vali-
dated by Brownian hydrodynamics simulations and comparison to
optical tweezer measurements on stretched DNA, the theory is highly
accurate in the intermediate tension regime over a broad dynamical range, without the need for additional dynamic fitting
parameters.
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between short and long-time dynamics, rather than distinct
regimes characterized by simple power law scaling. Moreover,
by comparing numerical results with and without long-range
hydrodynamics, we find that long-range coupling through the
solvent does have a significant effect—one that must be included
in any theoretical approach to obtain a quantitative comparison
with experiments.

Remarkably, the anisotropic mean-field theory captures both
the crossover and hydrodynamic effects, giving excellent agree-
ment with the simulations. In fact, the solvent-mediated coupling
between all points on the polymer is not an incidental element in
the method, but a key to its success: the long-range interactions
make the mean-field approach more realistic. This has already
been demonstrated for F= 0, where an earlier, isotropicMFT19,20

was able to model precisely the dynamics of an end-monomer in
DNA strands observed through fluorescence correlation spec-
troscopy (FCS);21 the experimental validation is reviewed in
section 2 below. A salient aspect of the experimental comparison
was that the isotropic MFT required no fitting parameters:
starting from the known properties of the system, it could
reproduce the measured end-monomer MSD over five decades
of time and three decades of chain lengths. While we do not yet
have comparably detailed experimental results for single chains
under tension, we are able to check our anisotropic MFT against
measurements of longitudinal and transverse relaxation times of
partially extended DNA molecules in an optical tweezer.4 Again
we can match the experimental results without dynamic fitting
parameters, which is a nontrivial test of our approach, since the
relaxation times are sensitive to details like the hydrodynamic
coupling in the chains.

The reason for resorting to an anisotropic, rather than an
isotropic, mean-field approach at F 6¼ 0 arises from limitations
revealed in earlier attempts to incorporate prestretching tension
using an isotropic Hamiltonian.22�24 An isotropic theory cannot
reproduce the distinct equilibrium thermodynamic averages for
directions parallel and perpendicular to the applied force. A
prerequisite for a good dynamical theory is that it must yield the
correct equilibrium properties in the long time limit. With this in
mind, the Hamiltonian of our anisotropic theory is designed to
give the exact lowest-order equilibrium averages for a stretched
semiflexible chain—derived from the numerical quantum solu-
tion of the worm-like chain (WLC) model. After fixing the
correct static quantities, we use our theory to predict dynamical
quantities: amplitudes and relaxation times of the chain fluctua-
tion modes, and related physical observables like the end-point
and end-to-end MSDs. Among the interesting qualitative visco-
elastic properties we find is semiflexible polymer stiffening under
tension, which has been seen experimentally in cytoskeletal
networks put under stress either through deformation,8 or the
activity of motor proteins.1

The anisotropic MFT is complementary to the WBA, in the
sense that it is most accurate in regimes where the WBA breaks
down. Conversely, certain aspects of the mean-field approxima-
tion—like the predicted longitudinal dynamics—do not work in
the asymptotic weakly bending limit. (In contrast, the MFT
transverse dynamics reduce to the conventional WBA results in
this limit, up to hydrodynamic corrections which are included in
our MFT treatment.) This is not surprising, since a Gaussian
model, like the one arising from our mean-field approach, can
never capture the longitudinal fluctuations of a nearly rigid rod.
However, while there are many good theories for the asymptotic
regime, the nonasymptotic case is less well understood, and

this is where ourmethodwill bemost useful. Given the resolution
of current single-molecule experimental techniques, one should
be able to sensitively probe the fine details of dynamical
behavior predicted by our theory and simulations, including
crossover and hydrodynamic effects over a broad range of time
scales.

The paper is organized as follows: section 2 summarizes the
earlier development of the isotropic MFT. For F = 0, we focus on
the predictive power of the theory for single-molecule experi-
ments on DNA dynamics. However, generalizing this success to
F 6¼ 0 turns out to be fraught with difficulties. In section 3, we
present a resolution to the problem, introducing an anisotropic
MFT Hamiltonian and deriving the corresponding dynamical
theory, based on a hydrodynamic preaveraging approach. Section
4 describes the BD simulations used to check the theory. Finally,
section 5 presents results: comparisons with simulations (section
5.1), with an optical tweezer experiment on DNA (section 5.2),
and with the WBA (section 5.3).

2. STRENGTHS AND LIMITATIONS OF THE ISOTROPIC
MFT

We begin by reviewing the isotropic MFT approach to semi-
flexible polymers at F = 019,20,25�27 and F 6¼ 0.22�24 The starting
point is the WLC Hamiltonian

UWLC ¼ lpkBT

2

Z
ds ð∂suðsÞÞ2 � Fẑ 3

Z
ds uðsÞ ð1Þ

which describes the elastic energy of a space curve r(s) with
contour coordinate 0 e s e L and tangent vector u(s) � ∂sr(s)
constrained by local inextensibility to |u(s)| = 1"s. The first term
is the bending energy, parametrized by the persistence length lp,
while the second term is the external field due to a force F along
the z axis. The |u(s)| = 1 constraint makes the dynamics of the
system analytically intractable, but the partition function Z,
expressed as a path integral over u(s), can be approximated
through the stationary phase approach, yielding a Gaussian
mean-field model. The end result is

ZMF ¼ expð � βF MFÞ ¼
Z

Du expð � βUMFÞ ð2Þ

where local inextensibility has been relaxed and the MFT
Hamiltonian is

UMF ¼ ε

2

Z
ds ð∂suðsÞÞ2 þ ν

Z
ds u2ðsÞ

þ ν0ðu2ð0Þ þ u2ðLÞÞ � Fẑ 3

Z
ds uðsÞ ð3Þ

Here ε � lpkBT parametrizes the bending energy, and the new
terms parametrized by ν and ν0 are bulk and end-point stretching
energies, respectively. From the stationary phase condition,
∂νFMF = ∂ν0FMF = 0, one finds that the parameters ν and ν0
are functions of F and ε, and act as Lagrangemultipliers enforcing
the global and end-point constraints

R
dsÆu2(s)æ = L, Æu2(0)æ =

Æu2(L)æ = 1.
2.1. Isotropic MFT at F = 0. For F = 0, UMF has been studied

extensively,25,26 and setting ε = (3/2)lpkBT it reproduces exactly
the WLC tangent�tangent correlation Æu(s) 3 u(s

0)æ and related
quantities. To extract dynamics, one can adopt a Zimm-like
hydrodynamic preaveraging approach,19�27 described in more
detail below in the context of the anisotropic MFT. Within this
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approach, the chain contour obeys a Langevin equation that can
be solved through normal mode decomposition. The power
of the resulting theory is amply illustrated through an experi-
mental example, where the accuracy of the predicted dynamics
was able to resolve a conflict between two FCS studies on
DNA.19,20,29

Both studies, by Shusterman et al.28 and later by Petrov et al.,21

measured the mean squared displacement (MSD) of a fluores-
cent tag attached to the end of double-stranded DNAmolecules.
A variety of contour lengths L = 0.1�20 kbp (≈ 30�7000 nm)
were used, three of which are shown in Figure 1 (taking com-
parable values of L from each experiment). In the top panels
the end-point MSD, Δend(t), is plotted as a function of time t
on a log�log scale, while the bottom panels show the local
slopes Rend(t) = d[log Δend(t)]/d[log t]. These slopes are
useful in characterizing the scaling behavior of the MSD, which
is typically analyzed in terms of power-law exponents. A pure
power-law scaling would manifest itself as plateau with constant
Rend(t), but what we see instead is a continuous variation of
the local slope, a reflection of slow crossovers between different
dynamical regimes.
Strikingly, theMSD curves from the two studies show a strong

divergence at small and intermediate times (at the largest time
scales, both converge to the same simple behavior, dominated
by the center-of-mass diffusion of the entire chain, with
Rend(t) f 1). The Shusterman et al. data exhibits an “inter-
mediate Rouse regime”, becoming more prominent for longer
chains, where Rend(t) ≈ 1/2 over times where lp

2 j Δend(t) j
L2. (The persistence length lp≈ 50 nm or 150 bp for DNA.) This
surprising t1/2 scaling of the MSD agrees with the Rouse model,

valid for flexible polymers in the absence of long-range hydro-
dynamic coupling. For the dilute solutions used in the experi-
ments, where screening by neighboring chains is negligible, the
classical expectation is that hydrodynamic corrections are sig-
nificant. Thus, one should see instead the t2/3 scaling predicted
by the Zimm model.18 In fact, the Petrov et al. data does show
R(t) closer to the Zimm value at intermediate times, and more-
over the magnitude of the MSD is 2�3 times smaller than in the
first experiment.
The isotropic MFT results for Δend(t) and Rend(t), including

long-range hydrodynamic interactions, are plotted as solid red
curves in Figure 1. There are no fitting parameters, with all the
constants taken either directly from the experimental setup or the
literature: T = 298 K, η = 0.891 mPa 3 s, a = 1 nm, a rise per bp of
0.34 nm, lp = 50 nm. The hydrodynamic MFT clearly distin-
guishes between the two experiments, showing close agreement
with the Petrov et al. results. Using the full data set from the
Petrov et al. experiment (comparison shown in ref 20) reveals
that the hydrodynamic MFT provides a global description of the
DNA end-point dynamics, covering three decades of strand
length (L ≈ 30�7000 nm), and five decades of time (10�2 �
103 ms). Over the time scales where there is least experi-
mental uncertainty, t = 10�1�102 ms, the average deviation
between theory and experiment ranges between 6�25% for the
different L.
To achieve this level of accuracy without fitting parameters,

the full physical complexity of the problem must be taken into
account, particularly the off-diagonal coupling between normal
modes due to hydrodynamics. The significance of hydrodynamic
effects can be seen by plotting the nonhydrodynamic isotropic

Figure 1. Top panels: Themean squared displacement (MSD),Δend(t), of a fluorescently tagged end-point in a double-strandedDNA chain of contour
length (a) L≈ 2 kbp, (b) L≈ 5 kbp, (c) L≈ 20 kbp. Bottom panels: the local slope Rend(t) = d[ln Δend(t)]/d[ln t], calculated by linear fitting to the
log�log plots of Δend(t) within a time window ti around each t defined by |log10ti/t|<0.15. The symbols show the results of two different
FCS measurements: Shusterman et al.28 (triangles) and Petrov et al.21 (circles). Comparable values of L are chosen from each experiment: 2400, 6700,
23100 bp from ref 28 and 1965, 5058, 19941 bp from ref 21. The isotropic hydrodynamicMFT results,20,29 without fitting parameters, are drawn as solid
red curves (with L values matching the ref 21 data). For comparison, to highlight the importance of long-range hydrodynamic interactions, the results of
the free-draining MFT theory without hydrodynamics are drawn as dotted red curves. The small deviations in L between experiments do not lead to
significant changes in the MFT curves on the scale of the figure—thus the hydrodynamic MFT clearly agrees with Petrov et al. rather than Shusterman
et al. The horizontal dashed lines in the bottom panel show power-law exponent values from various scaling theories: the Rouse model (Rend = 1/2), the
Zimm model (Rend = 2/3), and the worm-like chain (Rend = 3/4).
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MFT theory for comparison (dotted red curves in Figure 1). As
expected, these show R(t) values much closer to the Rouse
prediction of 1/2, with a clear asymptotic Rouse regime
developing for longer L. However the Shusterman et al. results
do not match the nonhydrodynamic theory either, with the
experimental relaxation times being smaller, and the observed
MSD values actually higher than the hydrodynamic ones at
small times. The opposite is true for the theory: with long-
range hydrodynamics screened, the MSD is noticeably
smaller than in the hydrodynamic case, since the effective
solvent friction felt by the chain is larger. The lack of agree-
ment between the Shusterman et al. data and either the
hydrodynamic or nonhydrodynamic theory points to an under-
lying issue with either the setup or analysis involved in
that study.
Overall, this example underlines the strengths of the MFT

approach: it can quantitatively reproduce the results of a single-
molecule experiment, down to nontrivial crossover behavior
of the polymer at different time scales. This is a considerable
success, given the interplay of various effects reflected in the
MSD curves of Figure 1: (i) the backbone rigidity, dominant for
Δend(t) j lp

2, giving an exponent of 3/4 plus hydrodynamic
corrections, though not clearly resolved due to uncertainties in
the short-time experimental data; (ii) the Zimm-like flexible
intermediate regime, though with the crossover inducing an
exponent slightly smaller than 2/3 for longer chains;19 (iii) the
large-scale polymer motions at long times, which include rota-
tional and translational center-of-mass diffusion. All of these are
reasonably described by the isotropic MFT.
2.2. Isotropic MFT at F 6¼ 0. The motivation of the current

study is to construct a theory that can match the quanti-
tative accuracy of the above example, but in the presence of
tension. While a prestretching force can be simply incorporated
into the isotropic MFT, the results are mixed. On the one hand,
the F 6¼ 0 isotropic MFT successfully yields the known asymp-
totic forms for the average end-to-end extension parallel to the
force:22

ÆRzæ
L

¼ 2lpF

3kBT
, F f 0,

ÆRzæ
L

¼ 1�
ffiffiffiffiffiffiffiffiffiffi
3kBT
8lpF

s
, F f ∞,

ð4Þ

where R =
R
0
Lds u(s) is the end-to-end vector. These agree with

theMarko-Siggia exact result for theWLC,30 except for the factor
3/8, which should be 1/4.
However, underlying this seemingly small discrepancy is a

serious problem in the isotropic MFT: for large F it cannot
correctly account for the anisotropic fluctuation behavior of the
WLC. To illustrate this, let us consider displacements δR ) = Rz�
ÆRzæ and δR^ = Rx or Ry. The MFT does not differentiate
between ) and^ fluctuations: ÆδR )

2æ = ÆδR^2æ for all F. However
for the WLC, ÆδR )

2æ becomes much smaller than ÆδR^2æ, as is
evident in the inset of Figure 2, showing a snapshot of end-point
fluctuations taken from a BD simulation. A similar anisotropy
exists between the^ and ) fluctuations at F = 0 for a stiff filament
with L j lp.

31 Using the exact mapping of the WLC onto
quantum motion over the surface of a unit sphere,32 we
numerically calculate the fluctuation magnitudes, which are
shown in Figure 2. (For details, see section 3.1.) Since the
MFT averages over all coordinate directions, its estimate for the

magnitude converges to the exact ÆδR^2æ at large F, as the ^
fluctuations dominate in that regime. It misses entirely the )

component. Thus, to understand the dynamic response of
stretched semiflexible polymers one needs a more suitable
theoretical starting point.

3. ANISOTROPIC MFT

To resolve these difficulties, we propose an anisotropic version
of the Gaussian model:

UMFA ¼ ∑
R¼ ) ,^

εR
2

Z
ds ð∂suRðsÞÞ2 þ νR

Z
ds uR

2ðsÞ
�

þ ν0RðuR2ð0Þ þ uR
2ðLÞÞ

�
� χF

Z
ds u )ðsÞ, ð5Þ

with u ) = uz, u^ = (ux, uy). The form of UMFA follows from the
isotropic mean-field Hamiltonian in eq 3 by breaking the
symmetry between directions parallel and perpendicular to the
pulling force. In addition to the six parameters which arise from
the bending (ε, ε^), bulk stretching (ν ), ν^), and end-point
stretching (ν0 ), ν0^) terms, we have the force term, which is
renormalized by a factor χ. The guiding philosophy will be similar
to the isotropic case: a dynamical theory based on a Hamiltonian
closely approximating the equilibrium behavior of the WLC
under tension. For this purpose, we require that UMFA should
reproduce exactly the following lowest-order WLC averages:
ÆR )æ, ÆδRR2æ,

R
0
L ds ÆuR2(s)æ, ÆuR2(0) + uR

2(L)æ, R = ), ^. The
latter can be calculated from the quantum solution to the WLC
(section 3.1). Since there are a total of seven of these averages, we
need seven free parameters in U so that the theory can exactly
match all the WLC results. (Hence, one has the presence of the
force rescaling factor χ, which is not otherwise required by
symmetry-breaking.) The analytical expressions for these
averages derived from U lead to seven equations for the seven
unknown parameters. These can be solved numerically for any
given L, lp, and F (examples are shown in section 3.2). In the limit
F f 0, our approach recovers the stationary phase condition of
the F = 0 isotropic model, as expected.

Our dynamical theory builds on the hydrodynamic preaver-
aging approach used earlier for the isotropic MFT.19,27 Here we

Figure 2. For a polymer with L/lp = 5, the end-to-end vector fluctuation
ÆδR2æ and its components, ÆδR )

2æ, ÆδR^2æ, with varying F (derived from
the exact quantum solution of the WLC), compared to the isotropic
MFT prediction. Inset: cloud of end-point positions (red points) taken
from a BD simulation of a polymer (N = 50 beads), with L/lp = 5 and
force F = 20 kBT/lp applied along the vertical axis. The initial polymer
configuration is shown in blue.
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give a brief outline of the approach, with the full details in section
3.3. The time evolution of the chain r(s,t) is governed by the
Langevin equation:

∂

∂t
rRðs, tÞ ¼ �

Z
ds0 μRavgðs� s0Þ δUMFA

δrRðs0, tÞ þ ξRðs, tÞ ð6Þ

where ξR(s,t) are stochastic velocities, and hydrodynamic
effects are included through the preaveraged anisotropic mobility
μavg
R (s� s0). The latter is derived from the continuum version of

the Rotne-Prager tensor μ5(s,s0;x),27 describing solvent-mediated
interactions between two points s, s0 on the contour at spatial
separation x. If the equilibrium probability of finding such
a configuration is G(s,s0;x), then the integration

R
d3x μ5 (s,s0;x)

G(s,s0;x) yields a diagonal 3 � 3 tensor whose R = ), ^
components we denote as μavg

R (s � s0). In the absence of
hydrodynamic effects (a case we will consider as a comparison),
the free-draining mobility is μfd

R(s� s0) = 2aμ0δ(s� s0), where a
is a microscopic length scale (i.e., the monomer radius), and μ0 is
the Stokes mobility of a sphere of radius a. We assume the
stochastic velocities ξ(s,t) are Gaussian, with correlations given
by the fluctuation�dissipation theorem:

ÆξRðs, tÞξRðs0, t0Þæ ¼ 2kBTδðt � t0ÞμRavgðs� s0Þ ð7Þ

The Langevin equation, together with boundary conditions at
the end-points due to the applied force, can be solved through
normal mode decomposition, yielding all the dynamical quan-
tities which we will analyze below.

A reader uninterested in the technical details of the ani-
sotropic MFT can skip sections 3.1�3.3 and proceed to the
description of the simulations in section 4 and the results in
section 5.
3.1. Quantum solution of the WLC. The mapping between

the WLC and a quantum particle moving on the surface of a unit
sphere can be exploited to calculate exactly many of the equili-
brium properties of the system.33 Here we follow a technique
similar to ref 32 to numerically evaluate thermodynamic averages
of the WLC to arbitrary accuracy. To compute all the quantities of
interest, we start with aWLCHamiltonian augmented by two extra
terms:

UWLC ¼ lpkBT

2

Z L

0
ds ð∂suðsÞÞ2 � F

Z L

0
dsuzðsÞ

� Fx

Z L

0
ds uxðsÞ � K

Z L

0
ds uz

2ðsÞ ð8Þ

The extra parameters Fx and K will later be set to zero after taking
the appropriate derivatives of the partition function. Rescaling the
contour variable as τ = s/lp and factoring out kBT, we can rewrite
UWLC in a simpler form:

βUWLC ¼
Z ~T

0
dτ

1
2
ð∂τuðτÞÞ2 � fuzðτÞ � fxuxðτÞ � kuz

2ðτÞ
� �

ð9Þ
where ~T=L/lp, f = βlpF, fx = βlpFx, and k = βlpK. Let us define
the propagator G(u0,u~T;~T) as the path integral over all con-
figurations with initial tangent u(0) = u0 and final tangent

u(~T)=u~T:

Gðu0, u~T ; ~TÞ ¼
Z uð~TÞ¼ u~T

uð0Þ¼ u0

Du
Y
s

δðu2ðsÞ � 1Þ expð � βUWLCÞ

ð10Þ

Then for boundary conditions with free end-point tangents the
partition function is given by Z=(4π)�2R

S du0 du~TG(u0 u~T;~T),
where the integrations are over the unit sphere S. The quantum
Hamiltonian corresponding to βUWLC is

H ¼ � ð1=2Þ∇2 � f cos θ� fx sin θ cos ϕ� k cos2 θ

ð11Þ
describing a particle on the surface of a unit sphere. In terms of
the associated quantum eigenvalues En and eigenstates ψn(u),
the propagator G is given by

Gðu0, u~T ; ~TÞ ¼ ∑
n
e�En ~Tψ

�
nðu0Þψnðu~TÞ

¼ ∑
n, l,m, l0 ,m0

e�En~Ta
�
nl0m0anlmY

�
l0m0 ðu0ÞYlmðu~TÞ

ð12Þ
where in the second step we have expanded out the eigenstates in
the basis of spherical harmonics, ψn(u) = ∑lmanlmYlm(u), with
coefficients anlm. For a given n, these coefficients are just the
components of the nth eigenvector for the HamiltonianH in the
Ylm basis. Thus, to proceed, one needs the detailed form of this
matrix:Hl,m;l0 ,m0 =Hl,m;l0 ,m00 +Hl,m;l0 ,m0f +Hl,m;l0 ,m0f

x +Hl,m;l0 ,m0k . We
list below only the nonzero elements of each contribution that
are relevant to the calculation, with the symmetry of the matrix
implicitly assumed:

H 0
l, 0;l, 0 ¼ lðl þ 1Þ,

H f
l, 0;l þ 1, 0 ¼ � f ðl þ 1Þ½ð2l þ 1Þð2l þ 3Þ��1=2,

H k
l, 0;l, 0 ¼ � kð2lðl þ 1Þ � 1Þ

4lðl þ 1Þ � 3
,

H k
l, 0;l þ 2, 0 ¼ � kðl þ 1Þðl þ 2Þ

ð2l þ 3Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2 þ 12l þ 5

p ,

H fx
l,m;l þ 1,m þ 1 ¼ 1

2
fx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl þ m þ 1Þðl þ m þ 2Þ

4lðl þ 2Þ þ 3

s
,

H fx
l,m;l þ 1,m � 1 ¼ � 1

2
fx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl�m þ 1Þðl�m þ 2Þ

4lðl þ 2Þ þ 3

s
:

ð13Þ
The eigenvectors anlm and eigenvalues En can be readily calcu-
lated numerically by truncating the infinite matrix Hl,m;l0 ,m0 to a
finite size (with cutoff chosen large enough to get the desired
precision). The partition function Z can then be written as:

Z ¼ 1

ð4πÞ2
Z
S
du0du~T ∑

n, l,m, l0 ,m0
e�En ~Ta

�
nl0m0anlmY

�
l0m0 ðu0ÞYlmðu~TÞ

¼ 1
4π∑n

e�En ~Ta
�
n00an00 ð14Þ
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Most of the thermodynamic averages used in the anisotropic
MFT can be directly derived from Z:

ÆR )æ ¼ lp
∂

∂f
log Z

�����
fx ¼ 0, k¼ 0

,

Z L

0
ds Æu )

2ðsÞæ ¼ L�
Z L

0
ds Æu^2ðsÞæ ¼ lp

∂

∂k
log Z

�����
fx ¼ 0, k¼ 0

,

ÆδR )

2æ ¼ lp
2 ∂

2

∂f 2
log Z

�����
fx¼ 0, k¼ 0

,

ÆδR^
2æ ¼ 2lp

2 ∂
2

∂fx
2 log Z

�����
fx¼ 0, k¼ 0

: ð15Þ

The end-point averages are calculated similarly:

Æu )

2ð0Þ þ u )

2ðLÞæ ¼ 2� Æu^2ð0Þ þ u^2ðLÞæ
¼ 2

ð4πÞ2
Z
S
du0 du~T u0 )

2Gðu0, u~T ; ~TÞ

¼ ∑
n
e�En ~Ta

�
n00

an00
6π

þ an20
3
ffiffiffi
5

p
π

� �
ð16Þ

3.2. Calculating the parameters of the anisotropic MFT.
With free end-point tangent boundary conditions, the partition
function

ZMFA ¼ ð4πÞ�2
Z
S
du0 duL

Z uðLÞ¼uL

uð0Þ¼u0

Du expð � βUMFAÞ

ð17Þ
corresponding to the anisotropic MFT Hamiltonian UMFA, eq 5,
can be evaluated analytically:

ZMFA ¼ 2
ffiffiffi
2

p
π3=2β�1ε^ω^

ðε^2ω^2 þ 4ν0^2Þ sinhðLω^Þ þ 4ε^ν0^ω^ coshðLω^Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β�1ε )ω )

ðε )

2ω )

2 þ 4ν0 )

2Þ sinhðLω )Þ þ 4ε )ν0 )ω ) coshðLω )Þ

s

�exp
βχ2F2 sinh

Lω )

2

� �
ðε )Lω )

2 � 4ν0 )Þ þ 2Lν0 )ω ) cosh
Lω )

2

� �� �

2ε )ω )

3 ε )ω ) sinh
Lω )

2

� �
þ 2ν0 ) cosh

Lω )

2

� �� �
0
BBB@

1
CCCA

ð18Þ
where ωR � (2νR/εR)

1/2, R = ), ^. Similarly one can extract
analytic expressions for all seven of the thermodynamic averages
used in the fitting of the MFT parameters:

ÆR )æ ¼ ðβχÞ�1 ∂

∂F
log ZMFA,Z L

0
ds Æu )

2ðsÞæ ¼ � β�1 ∂

∂ν )

log ZMFA,Z L

0
ds Æu^2ðsÞæ ¼ � β�1 ∂

∂ν^
log ZMFA,

ÆδR )

2æ ¼ ðβχÞ�2 ∂
2

∂F2
log ZMFA,

ÆδR^
2æ ¼ 2

βε^ω3
^

Lω^ � 4ν0^

2ν0^ coth
Lω^

2

� �
þ ε^ω^

0
BBB@

1
CCCA,

Æu )

2ð0Þ þ u )

2ðLÞæ ¼ � β�1 ∂

∂ν0 )

log ZMFA,

Æu^2ð0Þ þ u^
2ðLÞæ ¼ � β�1 ∂

∂ν0^
log ZMFA ð19Þ

By setting these expressions equal to the exact WLC results
calculated from the quantum approach, eqs 15 and 16, one
obtains a system of seven coupled equations that can be solved
numerically for a given L, lp, and F, yielding the seven Hamilto-
nian parameters: ε ), ε^, ν ), ν^, ν0 ), ν0^, and χ. Figure 3 shows a
set of solutions for L = 100a, lp = 20a, and varying F. In the small
force regime, F , kBT/lp, where stretching is negligible,
the parameters converge to the same values as in the isotropic
MFT: ν ) = ν^ = 3kBT/4lp, ν0 ) = ν0^ = 3kBT/4, ε ) = ε^ =
3kBTlp/2.

25,26 In the opposite limit of large force, F. kBT/lp, we
clearly see symmetry breaking between the tangential and
perpendicular parameters, and the model becomes distinctly
anisotropic. In this regime the parameters scale like: ν ) =
2(lpF

3/kBT)
1/2, ν^ = F/2, ν0 ) = (lpFkBT)

1/2/2, ν0^ ≈ 0.38kBT,
ε ) = (lp

3FkBT)
1/2, ε^ = lpkBT, and χ = 4(lpF/kBT)

1/2. As dis-
cussed in section 5.3, when the chain approaches full extension
with F f ∞, the transverse part of the MFT Hamiltonian
converges to the correct WBA asymptotic limit. The longitudinal
part does not have the WBA limiting behavior, but this break-
down is expected, since a Gaussian model cannot describe the
longitudinal dynamics of a nearly rigid rod.
3.3. Anisotropic MFT Dynamical Theory.Here we adapt the

dynamical theory used successfully for the isotropic MFT19,27 to
the anisotropic case of a chain under tension. The general
hydrodynamic preaveraging approach is similar to that used for
the Zimm model.17,18 The time evolution of the chain r(s,t)
follows the Langevin equation:

∂

∂t
rðs, tÞ ¼ �

Z L

0
ds0 5μ ðs, s0; rðs, tÞ � rðs0, tÞÞδUMFA

δrðs0, tÞ
þ ξðs, tÞ ð20Þ

Figure 3. Parameters of the anisotropic MFT Hamiltonian U as a
function of force F for a chain with L= 100a, lp= 20a, derived as described in
sections 3.1 and 3.2 in order to reproduce exact equilibrium averages of the
WLC. To plot all parameters in one graph, the units for the y-axis are as
follows: kBTa for εR, kBT/a for νR, kBT for ν0R,R = ),^. The force rescaling
parameterχ is dimensionless. The scaling forms of all these parameters in the
small and large force limits are shown at the end of section 3.2.
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Here the ξ(s,t) is the stochastic contribution, and μ5(s,s0;x) is the
continuum version of the Rotne-Prager tensor,27

5μ ðs, s0; xÞ ¼ 2aμ0δðs� s0Þ51

þΘðx� 2aÞ 1
8πηx

51 þ x X x
x2

� ��

þ a2

4πηx3
51
3
� x X x

x2

" #!
ð21Þ

describing long-range hydrodynamic interactions between two
points at s and s0 on the chain contour, separated by a spatial
distance x. The microscopic length scale a corresponds to the
monomer radius, η is the viscosity of water, μ0 = 1/6πηa is the
Stokes mobility of a sphere of radius a, and the Θ function
excludes unphysical configurations (overlap between monomers).
Equation 20 cannot be solved directly, because the hydro-

dynamic tensor depends on the exact configuration of the chain
at time t, so we employ the preaveraging approximation: repla-
cing μ5(s,s0;r(s,t)-r(s0,t)) with an average over all equilibrium
configurations, μ5avg(s,s0):

5μ avgðs, s0Þ ¼
Z

d3x 5μ ðs, s0; xÞGðs, s0; xÞ ð22Þ

where G(s,s0;x) is the equilibrium probability of finding two
points at s and s0 with spatial separation x. For the anisotropic
Hamiltonian UMFA this probability takes the form:

Gðs, s0; xÞ ¼ 3
2πσ^ðs� s0Þ

3
2πσ )ðs� s0Þ
� �1=2

�exp � 3x2^
2σ^ðs� s0Þ �

3ðx )� χFjs� s0j=2ν )Þ2
2σ )ðs� s0Þ

 !

ð23Þ
where σR(l) � (3(|l|ωR + exp(�|l|ωR) � 1)/βεRωR

3. In
deriving G we have assumed a large chain length L, which
simplifies the resulting analytical expression. Plugging eq 23 into
eq 22 leads to:

5μ avgðs, s0Þ ¼
μ^avgðs� s0Þ 0 0

0 μ^avgðs� s0Þ 0

0 0 μ )

avgðs� s0Þ

0
BBB@

1
CCCA
ð24Þ

where the anisotropic mobilities μavg
R can be written in terms of

integrals over coordinates x = (x^
2 + x )

2)1/2 and ζ = x )/x:

μ )

avgðlÞ ¼ 2aμ0δðlÞ þ 33=2Θðl� 2aÞμ0
ð2πÞ3=2σ^ðlÞ

ffiffiffiffiffiffiffiffiffi
σ )ðlÞ

p Z ∞

2a
dx

�
Z 1

�1
dζ

π� 3πζ2

x
þ 3

2
πðζ2 þ 1Þx

 !

�exp
3ðζ2 � 1Þx2

2σ^ðlÞ � 3ðζx� χFl=2ν )Þ2
2σ )ðlÞ

 !
,

μ^avgðlÞ ¼ 2aμ0δðlÞ þ 33=2Θðl� 2aÞμ0
ð2πÞ3=2σ^ðlÞ

ffiffiffiffiffiffiffiffiffi
σ )ðlÞ

p Z ∞

2a
dx

�
Z 1

�1
dζ

πð�3ζ2ðx2 � 2Þ þ 9x2 � 2Þ
4x

�exp
3ðζ2 � 1Þx2

2σ^ðlÞ � 3ðζx� χFl=2ν )Þ2
2σ )ðlÞ

 !
ð25Þ

These integrals are evaluated numerically to obtain the mobilities
as a function of contour distance l. In Figure 4 we show the results
for L = 100a, lp = 20a, and F = 1.0 kBT/a. Note that the mobility
parallel to the stretching direction is enhanced relative to the
transverse component, as we expect for an extended chain.
The preaveraged version of the Langevin equation can now be

written as:

∂

∂t
rRðs, tÞ ¼ �

Z L

0
ds0 μRavgðs� s0Þ δUMFA

δrRðs0, tÞ þ ξRðs, tÞ,

ð26Þ
for R = ), ^. The ξ(s,t) are Gaussian random vectors, whose
components have correlations given by the fluctuation�dissipa-
tion theorem:

ÆξRðs, tÞξRðs0, t0Þæ ¼ 2kBTδðt � t0ÞμRavgðs� s0Þ ð27Þ
Plugging in the form of UMFA, the internal force term in the
Langevin equation becomes

δUMFA

δrRðs0, tÞ ¼ εR
∂
4

∂s04
rRðs0, tÞ � 2νR

∂
2

∂s02
rRðs0, tÞ � ÔR

s0 rRðs0, tÞ

ð28Þ
where we have introduced the differential operator Ôs0

R. To
complete the dynamical theory, we must specify the boundary
conditions at the chain ends:

�εR
∂
3

∂s3
rRð0, tÞ þ 2νR

∂

∂s
rRð0, tÞ ¼ χFδR, ),

�εR
∂
3

∂s3
rRðL, tÞ þ 2νR

∂

∂s
rRðL, tÞ ¼ χFδR, ),

εR
∂
2

∂s2
rRð0, tÞ � 2ν0R

∂

∂s
rRð0, tÞ ¼ 0,

�εR
∂
2

∂s2
rRðL, tÞ � 2ν0R

∂

∂s
rRðL, tÞ ¼ 0 ð29Þ

The first two represent the force applied at the ends, while the
second two the absence of torque. To properly deal with the
boundary conditions for F 6¼ 0, we write r(s,t) in the following
way: rR(s,t) = ~rR(s,t) + χFδR, )ϕ(s), where ~r(s,t) satisfies the
homogeneous (F = 0) version of eq 29, while ϕ(s) is chosen such

Figure 4. Preaveraged mobilities μavg

) (l) and μavg
^ (l) as a function of

contour separation l for a chain with L = 100a, lp = 20a, and F = 1.0 kBT/a.
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that the total function r(s,t) satisfies the full boundary require-
ments. The resulting form for ϕ(s) is

ϕðsÞ ¼ Ls
2ðLν ) þ 2ν0jjÞ

þ Lν0jjs2

2ε )ðLν ) þ 2ν0jjÞ
� ν0jjs3

3ε )ðLν ) þ 2ν0jjÞ
ð30Þ

We now proceed to transform the Langevin equation into
matrix form, which will allow us to solve it through numerical
diagonalization. Let us assume ξR(s,t) satisfies similar boundary
conditions to ~rR(s,t), and expand both functions in normal
modes ψn

R(s), with amplitudes pRn(t) and qRn(t) respectively:

~rRðs, tÞ ¼ ∑
∞

n¼ 0
pRnðtÞψR

n ðsÞ, ξRðs, tÞ ¼ ∑
∞

n¼ 0
qRnðtÞψR

n ðsÞ

ð31Þ
The normal modes ψn

R(s) are chosen to be eigenfunctions of
the differential operator Ôs

R, satisfying Ôs
Rψn

R(s)=λRnψn
R(s) for

eigenvalues λRn. These eigenfunctions take the form:27

ψR
0 ðsÞ ¼

ffiffiffi
1
L

r
,

ψR
n ðsÞ ¼

ffiffiffiffiffiffiffi
CRn

L

r
KRn

sin KRnðs� L=2Þ
cos KRnL=2

�

þ GRn
sinh GRnðs� L=2Þ

cosh GRnL=2

�
, n odd,

ψR
n ðsÞ ¼

ffiffiffiffiffiffiffi
CRn

L

r
�KRn

cos KRnðs� L=2Þ
sin KRnL=2

�

þ GRn
cosh GRnðs� L=2Þ

sinh GRnL=2

�
, n even, ð32Þ

where

GRn
2 � KRn

2 ¼ 2νR=εR, λR0 ¼ 0,

λRn ¼ εRKRn
4 þ 2νRGRn

2 ð33Þ
The eigenfunctions obey the boundary conditions in the F = 0
version of eq 29, which fixes λRn, and hence the constants KRn
and GRn, while the CRn are normalization coefficients. The
boundary conditions lead to a single transcendental equation
for λRn, whose solutions can be found easily using a standard
numerical root finding algorithm. Plugging the normal mode
expansions into the Langevin equation, and exploiting the
orthonormality of the ψn

R, eqs 26 and 27 become:

∂

∂t
pRnðtÞ ¼ � ∑

∞

m¼ 0
HR

nmλRmpRmðtÞ þ χFwnδR, ) þ qRnðtÞ,

ÆqRnðtÞqRmðt0Þæ ¼ 2kBTδðt � t0ÞHR
nm ð34Þ

where

HR
nm ¼

Z L

0
ds
Z L

0
ds0 ψR

n ðsÞμRavgðs� s0ÞψR
mðs0Þ,

wn ¼
Z L

0
ds
Z L

0
ds0 ψ )

nðsÞμ )

avgðs� s0Þ2ν )ν0 )ðL� 2s0Þ
ε )ðLν ) þ 2ν0 )Þ

:

ð35Þ

BothHnm
R andwn can be evaluated through numerical integration.

In order to make solving these equations feasible, we introduce a
high-frequency cutoffM on the mode number, keeping only the
slowest-relaxing modes n = 0, ..., M � 1 (the M modes with
smallest λRn), whose hydrodynamic interactions are described by
the leadingM�M sub-blocks of the matrices HR. Following ref
19, we set M = L/8a, which provides good agreement at short
times with Brownian dynamics simulations of bead�spring
chains with monomer radius a. For longer times, where the poly-
mer motion is on length scales much larger than a, the dynamical
results are insensitive to the precise value of the cutoff. Overall
the numerical cost of evaluating all the quantities in the theory is
quite small, and can be accomplished on the order of minutes for
M = 12, the cutoff size used for the L = 100a chains studied here.
The final step in simplifying the dynamical theory is diagona-

lization. Let JR be theM�Mmatrix with elements Jnm
R =Hnm

R λRm,
ΛRn be the eigenvalues of J

R, and CR the matrix diagonalizing JR:
[CRJR(CR)�1]nm =ΛRnδnm. TheΛRn are assumed ordered from
smallest to largest with increasing n. Assuming nondegenerate
eigenvaluesΛRn, the matrix CR also diagonalizesHR through the
congruent transformation [CRHR(CR)T]nm =ΘRnδnm, defining para-
meters ΘRn.

17 The diagonal version of eq 34 then reads:

∂

∂t
PRnðtÞ ¼ �ΛRnPRnðtÞ þ χFWnδR, ) þ QRnðtÞ,

ÆQRnðtÞQRmðt0Þæ ¼ 2kBTδðt � t0Þδm, nΘRn,
ð36Þ

where

PRnðtÞ ¼ ∑
M � 1

m¼ 0
CR
nmpRmðtÞ,

QRnðtÞ ¼ ∑
M � 1

m¼ 0
CR
nmqRmðtÞ, Wn ¼ ∑

M � 1

m¼ 0
C )

nmwm ð37Þ

and rR(s,t) = ∑nPRn(t)Ψn
R(s) + χFδR, )ϕ(s) withmodified normal

modes Ψn
R(s) = ∑mψm

R(s)[(CR)�1]mn. Using eq 36 it now
becomes possible to solve for a variety of dynamical observables.
For example, the result for the MSD of a chain end-point is:

Δend
R ðtÞ � ÆðrRðL, tÞ � rRðL, 0ÞÞ2æ

¼ 2kBT ΘR0ðΨR
0 ðLÞÞ2t þ ∑

n > 0

ΘRn

ΛRn
ð1� expð �ΛRntÞÞðΨR

n ðLÞÞ2
" #

¼ 2DRt þ 2kBT ∑
n > 0

Aend
Rn ð1� expð �ΛRntÞÞ ð38Þ

where we have introduced the center-of-mass diffusion constant
DR = kBTΘR0(Ψ0

R(L))2, and coefficients ARn
end = ΘRn(Ψn

R

(L))2/ΛRn. Similarly, for the MSD of the end-to-end vector,

Δee
R ðtÞ � ÆðRRðtÞ � RRð0ÞÞ2æ
¼ 2kBT ∑

n > 0

ΘRn

ΛRn
ð1� expð �ΛRntÞÞðΨR

n ðLÞ �ΨR
n ð0ÞÞ2

¼ 2kBT ∑
n > 0

Aee
Rnð1� expð �ΛRntÞÞ ð39Þ

where ARn
ee = ΘRn(Ψn

R(L) � Ψn
R(0))2/ΛRn. One can see from

the form of eqs 38 and 39 that the eigenvaluesΛRn correspond to
inverse relaxation times τRn

�1 � ΛRn.

4. BROWNIAN DYNAMICS SIMULATIONS

For the BD simulations34 used to test the mean-field theory,
the chain consists of N beads of radius a (contour length
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L = 2aN) whose positions ri(t) are governed by the discrete
Langevin equation:

driðtÞ
dt

¼ ∑
N

j¼ 1
5μ ij � �∂UBDðr1, :::, rNÞ

∂rj

 !
þ ξiðtÞ ð40Þ

Long-range hydrodynamic interactions between monomers are
included through the Rotne-Prager35 mobilitymatrixμ5ij, which is
a discrete version of eq 21:

5μ ij ¼ μ0δi, j51 þ ð1� δi, jÞ 1
8πηrij

51 þ rij X rij
rij2

" # 

þ a2

4πηrij3
51
3
� rij X rij

rij2

" #!
ð41Þ

where rij � ri � rj. This matrix also determines correlations
for the Gaussian stochastic velocities ξi(t) according to the
fluctuation�dissipation theorem:

ÆξiðtÞ X ξjðt0Þæ ¼ 2kBT5μ ijδðt � t0Þ ð42Þ

The elastic potential of the chain UBD = Uben + Ustr + ULJ +
Uext consists of four parts: (i) a bending energy Uben = (εBD/2a)
∑i (1� cos θi), where θi is the angle between two adjacent bonds,
and εBD is related to the persistence length lp as εBD = lpkBT; (ii) a
harmonic stretching term Ustr = (γ/4a) ∑i(ri+1,i � 2a)2 where
inextensibility is enforced through a large modulus γ = 2000kBT/a;
for a recent discussion of the effects of varying stretching modulus
strength and the competition between bending and stretching
fluctuations, see ref 36; (iii) a truncated Lennard-Jones interac-
tion ULJ = ω∑i<j Θ (2a � rij) [(2a/rij)

12 � 2(2a/rij)
6 + 1]

with ω = 3kBT; (iv) an external force F along the z direction,
Uext = �Fẑ(rN � r1).

In the numerical implementation of eq 40, the Langevin time
step is τ = 3� 10�4 a2/(kBTμ0), where μ0 is the Stokes mobility
of a monomer, and a typical simulation lasts ∼108 � 109 steps.
Data is collected every 102�103 steps, and averages for the dyna-
mical quantities discussed below are based on 5�25 inde-
pendent runs.

5. RESULTS AND DISCUSSION

5.1. Comparison with BD Simulations. To validate the
anisotropic MFT, we compared the theoretical results to BD
simulations of a bead�spring worm-like chain. We focused on
two types of dynamical quantities, both of which are in principle
experimentally accessible (i.e., in an optical tweezer setup): (i)
MSD functions related to the polymer end-points; (ii) the
associated linear response functions, connected to the MSD
through the fluctuation�dissipation theorem.
Figure 5 shows MSD results for a representative semiflexible

polymer, with L = 100a and L/lp = 5. For each direction R, the
MSD of the end-to-end vector, ΔR

ee(t) � Æ(RR(t) � RR(0))
2æ

[Figure 5(a)], and an end-point of the chain,ΔR
end(t)� Æ(rR(L,t)�

rR(L,0))
2æ [Figure 5(b)], is depicted at two different forces F.

There is excellent quantitative agreement with the BD simulations
(dashed curves), with the maximum errors ≈10% for the ^ and
≈20% for the ) results in the time ranges shown. The biggest

discrepancies occur at short times for the ) component with
F = 20kBT/lp, where the length scale of the motion is comparable
to the bead size, and we expect the discrete BD chain to deviate
from continuum MFT behavior.
The close agreement is all the more remarkable since theMSD

shows a complex crossover behavior. Asymptotic WBA scaling
theory for the transverse dynamics predicts that for t, τ^1, the
longest relaxation time in the ^ direction, there are two regimes
separated by the crossover time t* = 2lpkBT/3F

2μ0a:
7 a stiffness-

dominated regime at t , t*, with MSD � t3/4, and a force-
dominated regime at τ^1 . t . t*, with a slower scaling � t1/2.
The insets of Figure 5a,b show the local slopes of the log�log
MSD plots, dlogΔR/dlogt, with times τ^1 calculated from the
MFT marked by dots. With increasing F, we do indeed find the
local slope is reduced, but the dynamic scaling is modified by two
important effects: (i) the slow crossover to center-of-mass
motion at times t . τ^1, where the slopes of ΔR

end and ΔR
ee

approach 1 and 0 respectively; (ii) logarithmic corrections due to
hydrodynamics, which increase the local exponent on the order
of 10%.
Note that even in the strongly stretched limit, Flp/kBT . 1,

where the polymer is nearly straight, hydrodynamics is signifi-
cant. Figure 6 shows MFT and BD results for ΔR

end with and
without hydrodynamics for a chain where L = 100a, L/lp = 5, and
F = 20 kBT/lp. The MSD components in the two cases cannot be
related through a simple time rescaling: for t*, tj τR1, we see
clearly the expected t1/2 behavior for the free-draining chain
(local slopes are shown in the inset), while the exponent is
pushed up to ≈0.6 � 0.7 with hydrodynamics. While a careful
WBA analysis7 can include hydrodynamics and account for some
of the crossover effects, it is less quantitatively accurate than the
MFT for weaker forces and more flexible chains. We will return
to this issue in section 5.3, where we make a direct comparison of
the two theories.
Using the fluctuation�dissipation theorem, theMSD can reveal

the viscoelastic properties of the chain: Fourier transforming the

Figure 5. MSD functions for a polymer with L = 100a, L/lp = 5: (a) the
chain end-point MSDΔR

end(t) = Æ(rR(L,t)� rR(L,0))
2æ; (b) the end-to-

end vector MSDΔR
ee(t) = Æ(RR(t)� RR(0))

2æ, where RR(t) = rR(L,t)�
rR(0,t). Solid lines are the anisotropic MFT results, while dashed lines
are taken from BD simulations. In all cases long-range hydrodynamic
interactions are taken into account, and results are given for R = ^, ) at
two forces, F = 2 and 20kBT/lp. Filled circles mark the relaxation times
τR1, derived from the MFT, while the insets show the local slopes of
MFT curves in the log�log plots.
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MSD functions gives the imaginary parts of the end-to-end and
self-response functions of the polymer end-points,

Im JendR ðωÞ ¼ � iω
2kBT

Δend
R ðωÞ,

Im JeeR ðωÞ ¼ � iω
2kBT

Δee
R ðωÞ ð43Þ

which are defined as

JendR ðωÞ ¼ δrRðL,ωÞ
fRðωÞ , JeeR ðωÞ ¼ δRRðωÞ

fRðωÞ ð44Þ

Here δrR(L,ω) and δRR(ω) are the complex oscillation ampli-
tudes resulting from a small force fR(ω) = f0exp(-iωt) applied to
one end (μ = end) or between both ends (μ = ee) of the chain, in
addition to the prestretching tension F. From the MFT solution,
eqs 38 and 39, one can express JR

μ(ω) as a sum over normal mode
contributions,

JμRðωÞ ¼ δμ, end
iDR

ωkBT
þ ∑

M � 1

n¼ 1

Aμ
Rn

1� iωτRn
ð45Þ

with center-of-mass diffusion parametersDR, relaxation times τRn,
and coefficientsARn

μ . Themode number cutoffM = L/8a is chosen
to roughly model the discrete nature of the chain at length scales
comparable to the bead diameter, but results at larger length scales
are independent of the cutoff.19

Figure 7 shows the real and imaginary parts of JR
ee(ω) and

JR
end(ω), for the same parameters as in Figure 5, compared to the
results extracted from BD simulations. The good quantitative
agreement with BD in the time domain is carried over to
frequency space: the simulation trends are accurately reproduced
by the MFT. For ω, τR1

�1, we see a mainly elastic end-to-end
response, JR

ee≈ AR1
ee (1 + iωτR1), with an effective spring constant

(AR1
ee )�1. The self-response of the end-point at these small

frequencies is proportional to the center-of-mass mobility,
JR
end ≈ iDR/ωkBT. For ω J τR1

�1 we pass into the more
interesting high-frequency regime governed by the complex
nature of normal mode relaxation under tension and hydrody-
namic interactions (up to the ultraviolet cutoff at τRM

�1, above
which the discreteness of the chain dominates). The effects of
tension in this regime have been directly observed in cytoskeletal
networks through microrheology:1,8 with increasing force the
dynamic compliance is reduced, and the high-frequency scaling
changes from ω�3/4 (the behavior of a relaxed semiflexible
network) toω�1/2. Qualitatively, we find both of these stiffening

Figure 7. Response functions for a polymer with L = 100a, L/lp = 5: (a) Re JR
ee(ω); (b) Re JR

end(ω); (c) Im JR
ee(ω); (d) Im JR

end(ω). Solid lines are the
anisotropicMFT results, while dashed lines are taken fromBD simulations. In all cases long-range hydrodynamic interactions are taken into account, and
results are given for R = ^, ) at two forces, F = 2 and 20kBT/lp. Filled circles mark the inverse relaxation times τR1

�1, derived from the MFT, while the
insets show the local slopes of the MFT curves in the log�log plots.

Figure 6. End-point MSDΔR
end(t), R =^, for a chain with L = 100a, L/

lp = 5, F = 20kBT/lp. The top two curves include hydrodynamic
interactions, while the bottom two are free-draining. MFT results are
shown as solid lines, BD simulations as dashed lines. The inset shows the
local slopes of the MFT curves in the log�log plot. MFT relaxation
times τR1 are marked by circles, while the crossover time t* is marked by
a vertical dashed line.
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effects in our MFT results in Figure 7: the magnitudes of JR
ee(ω)

and JR
end(ω) generally decrease with with force, and theω scaling

(indicated by the local slopes) is shifted. Unlike a network, where
hydrodynamics is screened, in the single polymer case the long-
range interactions modify the local slopes: rather than�3/4 and
�1/2, we see≈� 0.8 at weak force changing to≈� 0.6 at strong
force (most clearly evident in the insets to the Re and Im JR

end

panels in the right column of Figure 7, in the plateau-like slope
region between τR1

�1 j ω j τRM
�1). This correction, along

with the full crossover behavior of the imaginary response—
proportional to the power spectral density (PSD)—should be
observable in future nanorheology experiments for single semi-
flexible chains (i.e., the AFM techniques already used to extract
the PSD of flexible polymers37,38 or optical tweezer methods).
5.2. Comparison with Experimental Relaxation Times of

Stretched DNA. One dynamical quantity for which single-
molecule experimental results already exist is the largest relaxa-
tion time, τR1. Meiners and Quake have extracted the transverse
and longitudinal relaxation times, τ^1 and τ )1, from thermal
fluctuations of a double-stranded DNA chain (L = 16.4 μm)
stretched within an optical tweezer.4 The data is plotted as a
function of longitudinal chain extension ÆR )æ/L in Figure 8 (open
circles). The anisotropic MFT predictions are drawn as solid
curves. Again there are no fitting parameters, since the theory
depends only on the given value of L, lp = 50 nm, a = 1 nm, T =
298 K, and η = 0.891 mPa 3 s. The agreement with experiment
is very good, with average deviations of 26% for τ )1 and 18%
for τ^1.
The behavior of the relaxation times in this example, for a

chain that is mostly extended, can be modeled through a simple
scaling theory.4,39 If we treat the n = 1 mode of the polymer
effectively as the oscillation of a spring, we can write τR1 =
(μRkR)

�1. Here μR and kR is the effective mobility and spring
constant, respectively. When the chain is near maximum exten-
sion, the mobilities can be estimated as those of a thin rod of
diameter d = 2a, namely μ ) = ln(L/d)/(2πηL), μ^ = μ )/2, to
leading order. To get the spring constants, the starting point is
the approximate Marko�Siggia interpolation formula30 relating
the tension F felt by a semiflexible chain to its average end-to-end
extension Ree along the z axis:

FðReeÞ≈kBTlp
Ree

L
þ 1

4ð1� Ree=LÞ2
� 1
4

" #
ð46Þ

The force magnitude F is related to the polymer free energy F
through F = ∂F /∂Ree, and thus the effective longitudinal spring
constant k ) = ∂

2F /∂Ree
2 = ∂F /∂Ree. We can then estimate k

from eq 46:

k ) ¼
kBT
lp

1
L
þ 1

2Lð1� Ree=LÞ3
" #

ð47Þ

For the transverse direction, we use the following relation:39 if a
polymer stretched along z, with extension Ree, has one end
displaced by a small transverse distance δR^, the restoring force
δF^ = (δR^/(Ree

2 + δR^
2)1/2)F((Ree

2 + δR^
2)1/2). To leading

order in δR^, this gives δF^ = δR^F(Ree)/Ree, or equivalently
k^ = F(Ree)/Ree. From eq 46 we have

k^ ¼ kBT
lp

1
L
þ 1

4Reeð1� Ree=LÞ2
� 1
4Ree

" #
ð48Þ

Putting everything together we get the following expressions for
the relaxation times in terms of Ree:

τ )1 ¼ c )

2πηLlp
kBT lnðL=dÞ

1
L
þ 1

2Lð1� Ree=LÞ3
" #�1

,

τ^1 ¼ c^
4πηLlp

kBT lnðL=dÞ
1
L
þ 1

4Reeð1� Ree=LÞ2
� 1
4Ree

" #�1

ð49Þ
Since this is a scaling argument, we expect the results to be
approximately valid up to some constant prefactors, which we
denote c ) and c^. In fact, eq 49, plotted as dashed lines in Figure 8,
can be made to overlap the MFT curves almost perfectly, with
best-fit prefactors of c ) = 0.122 and c^ = 0.100. These are very
close to the prefactor 1/π2 ≈ 0.101 estimated in ref 4 from the
fluctuation�dissipation theorem. The relaxation times in eq 49
can alternatively be expressed as scaling functions of F,

τ )1 ¼ c )

πηL2lp
2kBT lnðL=dÞ

lpF

kBT

� ��3=2

,

τ^1 ¼ c^
4πηL2lp

kBT lnðL=dÞ
lpF

kBT

� ��1

ð50Þ

valid in the large F limit, Flp/kBT . 1.
As a side note, we have to be careful to assess the importance of

self-avoidance in cases where the chain contour L. lp, since this
is neglected both in the MFT and the scaling argument. If we
were to go to the limit of small forces, Flp/kBT , 1, and
extremely long chains, L . lp

3/a2, one expects to see the
influence of self-avoidance.40 In this particular experimental
example, neither of these conditions holds, since Flp/kBT ≈
3�50 for the measured extensions, and L = 16.4 μm, lp

3/a2 =
125 μm.
5.3. Comparison with the Weakly Bending Approxima-

tion. Finally, it is instructive to compare the anisotropic MFT

Figure 8. The longest relaxation times parallel (blue) and perpendicular
(red) to the force direction, τ )1 and τ^1, for a single double-stranded
DNA (contour length L = 16.4 μm) stretched in an optical tweezer.
Experimental data (open circles) from ref 4 is plotted as a function of
relative longitudinal chain extension ÆR )æ/L. The predictions of the
anisotropic MFT, calculated without fitting parameters, are drawn as
solid curves. The results of the simple scaling theory, eq 49, described in
section 5.2 are plotted as dashed curves. The constant prefactors in the
scaling results are fitted to theMFT curves, yielding best-fit values of c ) =
0.122 and c^ = 0.100. Consequently the MFT and scaling curves largely
overlap.
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results to the WBA, to illustrate the range of applicability and
relative strengths of both approaches. The traditional weakly
bending Hamiltonian for the transverse fluctuations of a chain
with constant backbone tension F and persistence length lp is
given by:7,11

U^
WBA ¼ lpkBT

2

Z
ds ð∂su^ðsÞÞ2 þ F

2

Z
ds u^

2ðsÞ ð51Þ

Comparing to eq 5, we see thatUWBA
^ is a special case of theR=^

component of the anisotropic Gaussian HamiltonianUMFA, with
ε^ = lpkBT, ν^ = F/2, and ν0^ = 0. By making these substitutions
in the derivation of section 3.3 (confining ourselves to the R = ^
part), and using the preaveraged hydrodynamic tensor μavg

^ (l) =
2aμ0δ(l) + 3Θ(l� 2a)μ0/4l (a special case of eq 25, appropriate
for a nearly rigid rod) we can recover the basic WBA dynamical
theory for chains under tension (i.e., section 4.2 of Granek’s
study7). The main difference from ref 7 is that our normal modes
incorporate the correct boundary conditions, rather than being
based on a Fourier expansion which is strictly valid only far from
the chain ends. In fact, at F = 0 the normal modes derived in our
way reduce to the expected Arag�on and Pecora expressions.41

The resulting dynamical equations based on UWBA
^ yield trans-

verse observables like Δ^
ee(t). The corresponding longitudinal

quantities like Δ )

ee(t) are derived in the WBA approach using
the approximate relation u )(s,t) ≈ 1 � u^

2(s,t)/2, valid when
u^

2(s,t) is small.
The WBA dynamical theory for the end-to-end MSD func-

tions ΔR
ee(t), R = ^, ) is contrasted to the anisotropic MFT and

Brownian dynamics (BD) results in the left panels of Figure 9
for a chain with L = 100a, L/lp = 5, and F = 2 kBT/lp. Though
the chain is stretched out for these parameters, with small
transverse fluctuations (ÆδR^2æ/2L2≈ 0.06), the WBA performs
worse than the MFT when compared to the simulation results.
Average deviations between the WBA and BD in the time range

shown are generally 5�10 times larger than the analogous
deviations between the MFT and BD, both for transverse and
longitudinal components. In the case of the longitudinal WBA,
the deviations from the simulations at very short times may
partially be accounted for by an effect which is not present in
our formulation: we do not include corrections for longitudinal
friction,31 which are expected to be relevant for times t, kBTlp/
μ0F

2 = 0.25lp
2/kBTμ0, and which are present in more sophisti-

cated implementations of the WBA9,11�13 (though these more
advanced approaches do not include long-range hydrodynamic
interactions, which we incorporate into our version of theWBA).
At the very largest times plotted, small oscillations in the slopes
calculated from BD are artifacts due to insufficiently converged
simulation data. Since the slopes are numerical derivatives of the
MSD functions, they are particularly sensitive to noise. However
this issue does not affect the clear deviations in slopes for t j 1
lp
2/kBTμ0.
The WBA becomes highly accurate in the limit of extremely

large force or large persistence length, when the chain is almost
fully extended. We show this in the right panel of Figure 9, for
parameters L = 100a, L/lp = 1/3, F = 60 kBT/lp, where the WBA
and BD results now nearly overlap. However, here we see a
limitation of the anistropicMFT: for a system that is nearly a rigid
rod, no Gaussian model will be able to capture the longitudinal
dynamics. The MFT underestimates τ )1 by an order of magni-
tude, withΔ )

ee(t) saturating to equilibriummuch quicker than the
BD result.
On the other hand, the transverse MFT is still remarkably

precise, deviating <7% from the BD curve throughout the entire
time range. This is not surprising, since the coefficients in the
transverse MFT, which are dependent on the parameters of the
chain, behave like ε^f lpkBT, ν^f F/2 as L/lpf 0 and/or Ff
∞ (the ν0^ term has a negligible effect in these limits). These
trends are in line with the results in Figure 3 for large F. In other

Figure 9. Top: End-to-end MSD ΔR
ee(t), R = ^ (cyan), ) (red); bottom: the corresponding local slope d[log ΔR

ee(t)]/d[log t]. Two different sets of
chain parameters are shown in the two columns: L = 100a, L/lp = 5, F = 2kBT/lp (left), and L = 100a, L/lp = 1/3, F = 60kBT/lp (right). Anisotropic MFT
results are drawn as solid lines, BD simulations (with long-range hydrodynamic coupling) as dashed lines, and theWBA results (described in section 5.3)
as dotted lines. For the nearly rigid rod case shown on the right, the additional green curve marked MFT+WBA is an estimate for the longitudinal
dynamics based on applying a WBA-like expansion to the transverse MFT, as described in Appendix A.
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words, the transverse MFT converges to the WBA Hamiltonian
in the stiff rod limit, and in this sense the transverse MFT is a
general theory that contains the WBA as a limiting case.
Knowing the breakdown of the longitudinal MFT in the

asymptotic limit, we can actually incorporate a fix: using
the transverse MFT results in combination with the WBA to
estimate longitudinal quantities (taking advantage of the fact that
the transverseMFTworks well in all regimes). The key relation is
u )(s,t) ≈ 1 � u^

2(s,t)/2, valid in the stiff limit. Using the
transverse MFT estimate of u^

2(s,t), one can derive a first-order
perturbation expansion for Δ )

ee(t) (details are in Appendix A),
yielding the green curve in Figure 9. This gives a much better
agreement with BD (<25% deviation) than the original MFT. As
described above, this fix for the longitudinal theory is only
necessary for the rigid rod limit; otherwise the original MFT is
the preferred choice.

6. CONCLUSIONS

In summary, we have developed an anisotropic MFT for the
dynamics of semiflexible chains under tension, whose most
notable feature is quantitative accuracy over a broad range of
dynamical regimes—verified through BD simulations and com-
parison to single-molecule measurements on DNA. The theory
precisely captures the interplay of backbone rigidity, long-range
hydrodynamic interactions, and large-scale motion of the poly-
mer contour that contribute to the challenge of modeling
semiflexible polymer dynamics.

Understanding kinetics of single stretched chains is interesting
in itself (or as the first step toward more elaborate theories of
stressed networks), but it can also be exploited in other contexts:
optical tweezer force-clamp experiments depend sensitively on
the dynamical response of the DNA handles that are attached to
the object of interest, whether a nucleic acid hairpin or protein.42

A prerequisite for filtering out the handle effects, in order to
extract the intrinsic properties of the biomolecule in the clamp, is
an accurate theory for the handle dynamics.

The simple Gaussian form of the anisotropic MFT has its own
advantages: it allows easy analytical computation of various
additional quantities like Green’s functions describing the sto-
chastic time evolution of the polymer. For the F = 0 case, this fact
has already been exploited to model diffusion-limited reactions
between a DNA-binding protein and its target site on the DNA,
using the MFT to incorporate contour fluctuations and hydro-
dynamic effects.43 For F 6¼ 0, the Green function formalism will
allow precise estimates in reaction-diffusion systems involving
semiflexible components under tension, like motor proteins
stepping under load—one of many macromolecular systems
where our approach can be fruitfully applied.

’APPENDIX A: WBA ESTIMATE FOR Δ )

ee(t) BASED ON
THE TRANSVERSE MFT RESULTS

For small deviations from the rigid rod limit, the transverse
and longitudinal tangent vectors of the WLC can be related as:
u )(s,t) = (1 � u^

2(s,t))1/2 ≈ 1 � u^
2(s,t)/2 + 3 3 3 , where u^ =

(ux,uy). This is the fundamental equation for the WBA, and it
allows one to derive certain aspects of the longitudinal dynamics
assuming the transverse dynamics are known, specifically the
behavior of u^

2(s,t). As seen in section 5.3, the anisotropic MFT
provides a highly accurate prediction for the transverse end-
to-end MSD even for very stiff chains, so we can exploit the

reliability of the transverse dynamical theory through the WBA
approach.

We focus on finding an estimate for the longitudinal end-to-
end MSD Δ )

ee(t), though the method is generalizable to other
dynamical quantities. Δ )

ee(t) can be expressed as Δ )

ee(t) =
2(C )(0)� C )(t)), where the correlation functionC )(t) is given by:

C )ðtÞ ¼ ÆR )ðtÞR )ð0Þæ� ÆR )æ
2

¼
Z L

0
ds
Z L

0
ds0 Æu )ðs, tÞu )ðs0, 0Þæ�

�Z L

0
ds Æu )ðs, 0Þæ

�2
ð52Þ

Here we have used the fact that R )(t) =
R
0
Lds u(s,t). Plugging in

the first-order expansion u )(s,t) ≈ 1 � u^
2(s,t)/2, we get an

expression for C )(t) involving averages over various products of
u^

2(s,t). From the normal mode expansion in section 3.3, we
know that u^(s,t) = ∂sr^(s,t) = ∑nP^n(t)Ψn

^0
(s), where P^n =

(Pxn,Pyn) andΨn
^0
(s)� ∂sΨn

^(s). Thus, all averages over u^
2(s,t)

are averages over the normal mode amplitudes P^n(t), and these
can be directly calculated fromWick’s theorem and the solution of
eq 36 for the ^ components. The final result for C(t) at order
O(u^

2) has the form:

C )ðtÞ ¼ ∑
k, l
fkðtÞflðtÞMkl

2 ð53Þ

where

fkðtÞ ¼ kBTΘ^k

Λ^k
expð �Λ^ktÞ,

Mkl ¼
Z L

0
dsΨ^0

k ðsÞΨ^0
l ðsÞ ð54Þ

Thus, C )(t) can be expressed entirely in terms of quantities from
the ^ MFT solution: the parameters {Λ^n,Θ^n} and the normal
modes {Ψn

^(s)}. Numerical evaluation of eqs 53 and 54 yields
C )(t) and hence Δ )

ee(t).
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