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a b s t r a c t

The tensor renormalization group (TRG) is a powerful new approach for coarse-graining
classical two-dimensional (2D) lattice Hamiltonians. It uses the intuitive framework of
traditional position space renormalization group methods – analyzing flows in the space
of Hamiltonian parameters – but can be systematically improved to yield thermodynamic
properties at much higher precision. We present initial results demonstrating that the TRG
can be generalized to quenched random systems, applying it to obtain the phase diagramof
a bond-diluted triangular lattice Ising ferromagnet. This opens a variety of potential future
applications, most prominently spin glasses.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The recently developed tensor renormalization group (TRG) [1] for classical 2D lattice systems represents a significant
step forward for position space renormalization techniques. Compared to older approximate coarse-graining approaches
based on system-specific heuristics [2–7], the TRG has several advantages: (i) it applies to any lattice model that can be
formulated in terms of local Hamiltonians expressed as tensors at each lattice site, including the Ising, Potts, and various
vertex models; (ii) it can be systematically improved in a straightforward fashion to converge to the exact free energies
and phase transition temperatures; (iii) though its numerical accuracy is competitive with techniques like finite-size
scaling of large systems, it can be interpreted just like the traditional renormalization group (RG)—by analyzing flows in
a multidimensional parameter space [8].
The TRG has already proven its usefulness for frustrated and unfrustrated classical Ising models on the triangular [1] and

Shastry–Sutherland [9] lattices. But these are only the first steps in a much broader array of potential applications, which
include the thermodynamic characterization of complicatedmulticritical systems. In the presentworkwe briefly outline the
original method, and show preliminary results for a promising extension: applying the TRG to quenched random systems,
using bond percolation in a triangular lattice Ising ferromagnet as a test case [10].

2. TRG for pure systems

We start with a review of the TRGmethod for pure lattice systems (more details can be found in [1,8]). Assuming that we
have a Hamiltonian with local interactions that can be expressed in terms of degrees of freedom on the bonds of the lattice,
our system can be mapped onto a tensor network [11] as follows. Each of the N lattice sites has coordination number q and
each bond can be in one of d possible states. Then the real-valued, symmetric tensor Ti1 i2···iq associated with a given site,
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Fig. 1. (a) Graphical representation of the tensors. The convention is that the order of indices in the tensor matches the counterclockwise ordering of
the labels on the vertex legs. (b) Rewiring. (c) Decimation. (d) RG transformation applied to the entire hexagonal lattice, with the first arrow showing the
rewiring step, and the second arrow showing the decimation.
Source: (Reproduced from Ref. [8].)

where each index iα runs from 1 to d, is a Boltzmann weight depending on the configuration of the q bonds meeting at the
site. The partition function Z is a contraction over the N site tensors,

Z =
d∑

i1,...,iM=1

Ti1 i2···iqTi1 ir ···isTi2 it ···iu · · · , (1)

with each index contracted between two different tensors (since each bond is shared between two sites). Though the TRG
method can be applied to various 2D geometries (i.e. the square and kagomé lattices [1]), it is simplest to describe it for a
hexagonal lattice. Herewe can graphically represent the tensors Tijk as three-legged vertices (Fig. 1(a) left), and a contraction
of an index between two tensors as joining two vertex legs. Thus Z as a hexagonal tensor network is shown on the left of
Fig. 1(d), and the TRG transformation consists of amapping of the original system onto a tensor network on a coarse-grained
hexagonal lattice with N ′ = N/3 vertices (Fig. 1(d) right).
The mapping is carried out in two steps, known as rewiring and decimation. In the rewiring step the bonds of two

neighboring tensors are reconnected as in Fig. 1(b), rewriting them as a contraction of two new tensors S,

d∑
k=1

TijkTklm =
d2∑
ν=1

SmiνSjlν . (2)

While them and i indices in the tensor Smiν run up to d, the ν index runs up to d2 (graphically distinguished as a thick bond,
as in Fig. 1(a) center). To find the S tensor, note that Eq. (2) can be written as a d2 × d2 matrix equation, M = SST , where
Mαβ ≡

∑
k TijkTklm, Sαν ≡ Smiν , and we introduce the composite indices α ≡ (m, i), β ≡ (j, l). SinceM is symmetric (due to

the cyclical symmetry of T ), singular value decomposition leads to the factorization [12]: M = UΣUT , where U is unitary
and Σ is a diagonal matrix containing the d2 singular values of M . Then the elements of S are given by Sαν =

√
ΣννUαν ,

where Σνν is the νth singular value (assumed ordered from largest to smallest with increasing ν). The rewiring procedure
is applied to all pairs of T tensors in the lattice, as shown by the first arrow in Fig. 1(d), leading to a martini lattice involving
only S tensors.
The decimation step in the TRG procedure traces over the degrees of freedom in the triangular clusters that are formed

after the rewiring, replacing each triangle by a renormalized tensor T ′ (second arrow in Fig. 1(d)),

d∑
m,i,h=1

Shmγ SmiνSihδ = T ′γ δν . (3)

Thus the complete mapping will express Z exactly in terms of a T ′ tensor network, though the tensor elements are
now complex in general (due to the unitary matrix U that enters into the S construction). The tensor structure is also
not preserved, because the index range of the tensors increases after the mapping, from d to d2. Thus iteration of the
transformation will lead to arbitrarily complicated tensors, rendering it numerically impractical. To make the TRG feasible,
the index range is truncated by an upper bound D: instead of using the full matrix Sαν to calculate T ′, we use only the first
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Fig. 2. An image compressed using singular value decomposition with a successively increasing cutoff, i.e. taking into account the largest D = 10, 20,
30, 50 singular values. The bottom center image is the exact original for comparison. Bottom right: a plot of the singular values of the original sorted by
decreasing magnitude.

d̄ columns, where d̄ ≡ min(d2,D). In terms of this truncated matrix S̄, the rewiring step becomes approximate, M ≈ S̄S̄T .
Since the first d̄ columns of S correspond to the d̄ largest singular values, this approximation works surprisingly well even
for small values of D, and can be systematically improved by increasing D. Using S̄ instead of S in Eq. (3) means the indices
of T ′ run up to d̄, and the iterated TRG corresponds to flows in a finite-dimensional space of complex tensor elements.
The approximation in the rewiring step can be visualized through an analogy to image processing, where it is common

to use singular value decomposition to compress images [13]. In Fig. 2, we see an image (a matrixM of pixel shadings), and
successive approximations involving the D largest singular values. Even with D as small as 10 the main qualitative features
are captured, and the approximation converges to the original as D increases.
To demonstrate the power of the TRG, in [1,8], the method was applied to an Ising model on a triangular lattice. Through

a duality transformation, the partition function of this system can be rewritten as a tensor network with

Tijk = e
βJ
2 (σi+σj+σk)P(σi, σj, σk), (4)

where J is the Ising nearest-neighbor coupling, β = 1/kBT , σi = −1, 1 for i = 1, 2, and P is a projection operator,
P(σi, σj, σk) = (σiσjσk + 1)/2.
As was shown in [8], the tools of traditional RG theory can be adapted to extract thermodynamic properties from the

TRG flows. If we focus on the tensor element amplitudes, |Tαβγ |, these flows are in a D(2 + D2)/3-dimensional space (the
number of distinct elements in a cyclically symmetric tensor with index range D). The low and high temperature phases
in the ferromagnetic Ising model correspond to basins of attraction in this parameter space, associated not with isolated
sinks, but rather continuous surfaces of fixed points. Despite this complication, critical temperatures and exponents can be
deduced from properties of the boundaries between the basins, just like in a conventional RG. What distinguishes the TRG
is the accuracy of the derived thermodynamic results: already at D = 4 the free energy is within 0.09% of the exact value
at all temperatures, while the critical temperature and thermal eigenvalue are off by 3% and 2%, respectively. By D = 24,
these error values have decreased to 0.0007% for the free energy, 0.02% for the critical temperature, and 0.9% for the thermal
eigenvalue.

3. The TRG for disordered systems

Given the success of the TRG for pure systems, it is natural to extend the method to deal with more challenging aspects
like quenched randomness [10]. Here the major difficulty is the spatial heterogeneity of the tensors in the original network,
which leads to correlations between nearby tensors in the renormalized system that have to be accounted for in the rewiring
anddecimation steps.While these correlations can be treated approximately (updating a randompool of tensors at each step,
along the lines of the Nobre method [15]), it is instructive to test the method first in a disordered system keeping all spatial
correlations intact. To do this, we looked at large finite triangular lattices, with periodic boundary conditions, and a bond-
diluted ferromagnetic Ising Hamiltonian with couplings Jij distributed with probability P (Jij) = pδ(Jij) + (1 − p)δ(Jij − J).
The rewiring/decimation can be applied in a straightforward manner to all tensors in the network derived from the dual
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Fig. 3. The phase diagram of the bond-diluted triangular lattice Ising ferromagnet in terms of bond probability p versus temperature [10]. The boundary
between the paramagnetic and ferromagnetic phases is calculated using the TRG for different cutoff parameters D and various system sizes N . The D = 8
and D = 10 results are for N = 236 196 sites, while D = 12 is for N = 78 732. The analytical approximation from [14] is drawn for comparison.

transform of the system, and the TRG is iterated until only a small number of renormalized spins are left, whose partition
function can then be summed exactly.
The phase diagram of the bond-diluted Ising ferromagnet on a triangular lattice derived from the TRG is shown in Fig. 3 in

terms of probability p versus temperature. For cutoffsD = 8–12 and systemsizesN ≈ 8×104–2.4×105, the results converge
to a smooth phase boundary, which agrees quitewell with the analytical approximation of [14]. For zero temperature, where
the boundary is purely a percolation transition, the exact threshold probability pc is recovered with about 1% error [16].

4. Conclusion

In summary, the TRG is a versatile position space renormalization group technique for a wide range of classical 2D lattice
Hamiltonians. While maintaining the general features of conventional RG methods, it offers substantive gains in accuracy,
and is capable of systematic improvement through the cutoff parameter D. With the initial results outlined here, we show
that it is possible to extend themethod to incorporate quenched randomness, opening newavenues for future investigations,
like spin glasses and other frustrated systems. We are currently working on a more thorough analysis of the random TRG
method, including local external fields, comparing the effectiveness of approximations like the Nobre procedure [15], and
designing computational enhancements to deal with larger systems or more complex Hamiltonians.
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