
BIOREPS Problem Set #11
The Evolution of DNA Strands

1 Background

In the mid 2000s, evolutionary biologists studying DNA mutation rates in birds and primates
discovered something surprising. There were a large number of mutations in DNA of di�erent
species over the last several thousand years, which indicats a robust evolution. However going
back further, comparing genomes across millions of years indicates a much lower mutation rate.
How are these consistent with each other? It turns out the overall rate of mutation is dependent
on the timescale. At low timescales, there are rapid �uctuations, but since these �uctuations are
essentially random, some of them cancel each other out, leading to an overall slower evolution
rate. A good analogue of this system is the stock market. While there are rapid �uctuations by
the hour, over course of days or weeks, the overall change is much more gradual [1].

In this problem set, we explore this mutation rate within the context of a single DNA strand.
Although di�erent mutation rates have been measured for each base pair transition, we will work
in the simpli�ed example, where all of them are equal. We will characterize the mutation rate
by the self similarity, de�ned as the fraction of bases are are the same as in the original strand.
In our model, we will �nd that the self-similarity converges on 25% (the same as a completely
random DNA strand) at an exponential rate.

In this context, in the long time approximation the DNA strand can be represented as a bi-
nomial random variable, (analogous to a series of coin �ips, but with an arbitrary probability of
getting heads). The binomial random variable gives the probability distribution of any number of
heads, This is a standard distribution in probability, and thus its properties are well understood.

At this point, we are able to characterize the average behaivor in the long-time approximation.
Applying the central limit theorem to binomial random variables, if we average over a large
number, the distribution will converge to a normal (Gaussian) distribution, centered around the
mean of a single binomial random variable, with a standard deviation given by the square root
of the variance of that distribution [2].
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2 Questions

2.1 Modeling Similarity of a Single DNA Site

a) Consider the model for DNA mutation considered above: at each time-step, a speci�c site on
the DNA strand is chosen with uniform problem (i.e., for n sites, the probability of choosing a
speci�c site is 1

n
). Once this site is chosen, if it is currently in state i, it transitions to state j with

probability µij, i 6= j. Here, both i and j are elements of the discrete state spaceE = {A,G,C, T}
representing the four possible base pairs for DNA.

If we assume that these transition probabilities are time-independent and site-independent,
write the general transition matrix Ω describing the process of base pair mutation. Then, simplify
this matrix to the speci�c case where all probabilities µij are uniform. You should �nd that your
Ω-matrix is a very simple and symmetric.

b) With the transition matrix Ω, we can now begin to solve the master equation, but using a
di�erent approach than we learned in class. Our �rst step is to derive an ordinary di�erential
equation for the time-evolution of the probability of a speci�c site being a certain base-pair value.
From the master-equation formalism, we can write the probability of a site being a speci�c base-
pair value as

pi(t+ ∆t) = pi(t)− pi(t)µii∆t+
∑
j 6=i

pj(t)µji∆t, (1)

where i ∈ E. If instead we consider the probability vector P(t) = [pA(t) pG(t) pC(t) pT (t)]T ,
show that equation (1) simpli�es to a simple ordinary di�erential equation in the limit as ∆t goes
to zero,

dP(t)

dt
= ΩP(t). (2)

c) The equation derived in b) is very familiar to us; if quantities were not vectors, the solution
would be a simple exponential. Luckily for us, we can solve this vectorized equation in the same
way as the non-vectorized case, and obtain the solution

P(t) = P(0)eΩt = P(0)P (t). (3)

However, we now have to deal with what an exponential power means. We can de�ne matrix
exponentiation using the Taylor series

eΩt =
∞∑
k=0

Ωk t
k

k!
= I + Ωt+ Ω2 t

2

2
+ . . . . (4)

Using the de�nition in equation (4), solve for the matrix P (t) in equation (3). You should �nd
that the solution is another symmetric matrix (Hint: write out the �rst few terms of the Taylor
series and sum them together. You should �nd that the entries in this matrix sum resemble a
Taylor series for et).
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d) With your solution for c), take the limit as t goes to in�nity to �nd the long-run behavior of the
probability P(t). Your answer should be simple, yet make very intuitive sence: the probability of
a site staying the same is 1

4
. Why does this answer make conceptual sence based on the model?

2.2 Long-Run DNA Similarity Estimates: the Well-Mixed Binomial Ap-
proximation

e) While we have a derivation for the similarity of a single DNA site, we really want to model
the similarity of the entire DNA strand after mutation. If limit our investigation to long-run
behaviors, we argue that we can model the number of mutated DNA sites that are the same
base-pair value as the original DNA sequence as a binomial random variable.

As a quick introduction to probability theory and random variables, we denote a random
variable X that is binomially distributed as X ∼ Binom(n, p), which implies that

P (X = i) =

(
n

i

)
pi(1− p)n−i, i = 1, . . . , n,

(
n

i

)
=

n!

(n− i)!i!
. (5)

We can think of a binomial random variable with parameters n and p as the number of sucessful
outcomes of n trials, where each trial is independent from the others and the probability of success
of a single trial is p. The easiest example of a binomial random variable is asking the probability
of observing i heads when �ipping n coins.

With this knowledge, why does our argument that the number of similar DNA sites after
many mutations have occured can be modeled as a binomial random variable?

f) From our well-mixed binomial model, we can derive analytic estimates of the mean and stan-
dard deviation of the similarity in the limit of large number of simulations. First, we need to derive
the expectation and variance of a binomial random variable. For a general random variable, these
values are given by

E [X] =
∑
i

xip(xi) = µ.

V ar (X) = E
[
(X − µ)2

]∑
i

(xi − µ)2p(xi) = E
[
X2
]
− (E [X])2 .

Using these de�nitions, and the de�nition of the distribution of a binomial random variable
from equation (5), show that if X ∼ Binom(n, p), then E[X] = np and V ar(X) = np(1 − p)
(Hint: There are many ways to derive these equations; one method is to calculate the k-th moment
of X, E

[
Xk
]
, and use this to obtain the mean and variance. The identity i

(
n
i

)
= n

(
n−1
i−1

)
may also

be helpful.).

g)Now, consider an experiment where we draw from the above binomial distribution many times,
where each draw is independent of the others, and create a distribution of the values obtained
from each draw. By the Central Limit Theorem from probability theory, in the limit of large sam-
ple size, this distribution converges to a normal distribution (i.e., a Gaussian) with the same mean
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and variance as the binomial distribution we draw from. Using this approximation, calculate the
mean and standard deviation of this normal distribution, using the fact that the standard devia-
tion σ is just the square root of the variance. Then, rescale the distribution by dividing by n to
measure similarity on the interval [0, 1], and plug in values n = 100 and p = 0.25. You should
�nd that the mean of this distribution matches the theoretical long-run similarity of a single site
obtained in d).

2.3 Simulating DNA Mutation and Similarity

Now we will simulate the DNA mutation strand as we have done in previous problem sets. It
may be helpful to get back to the �rst problem set to refresh your mind in doing this simulation.

h) Write a simulation that models the self-similarity of a DNA strand as a function of time. The
self similarity is simply de�ned as the fraction of base pairs that are the same as the original DNA
Run this simulation for a large number of trials and plot the mean of the self-similarity at each
time step. Describe the notable features. Do they make sense given the mathematical modeling
we have done above?

Simulation Hints: Start with a random distribution of base pairs. At each time step, choose
a random base pair, and generate a random number to determine if it mutates. At the end of each
time step, use a loop to count the number of base pairs that are the same as the original, and
divide by total base pairs to �nd the self-similarity. The self-similarity values, the original DNA
strand, and the current DNA strand are the only things that should be stored between time steps.
If you store the current DNA strand at each time step, and attempt to calculate the self-similarity
afterwards, you will quickly run out of space.

Suggested Simulation Values: 100 base pairs, 2000 timesteps, 10000 trials. Transition rate
between and base pair and any mutation: 10−3 per timestep.

i) You should �nd that your self-similarity appears to have an exponential distribution. To test
this hypothesis, �t your curve to the standard exponential form:

P (t) = A+Be−kt (6)

Do the values for A, B, and k that you �nd make sense? Explain.

j) Plot the standard deviation as a function of time, and describe any notable features. With
this plot, estimate the asymptotic (late time) standard deviation, and compare to the value you
calculated in part g), with appropriate values plugged in.

2.4 Mean First Passage Time to Varying Levels of Self-Similarity

Let us now observe this system through a di�erent lens; consider the varying levels of self-
similarity as the possible states for the DNA strand. If we have a DNA of �xed length N , then
the discrete state space becomes {0, 1, 2, ... , N-1, N} where state i would correspond to having i
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base pairs identical to the DNA before any mutations. We can now consider the rates of jumping
from i to i+1 and i to i-1 with respect to the mutation rate µ. In order to jump from i to i+1, we
would need one of the (N − i) incorrect base pairs to mutate to the correct base pair. Since there
are 3 possible mutations that could occur, the rate of one incorrect base pair mutating correctly
is µ

3
. Considering there are N − i incorrect base pairs, the total rate from i to i+1 is (N−i)µ

3
. Now,

in order to jump from i to i-1 we need one of the i correct base pairs to mutate to any of the other
3 incorrect base pairs. Thus this total rate occurs as iµ. From this we can see that our transition
matrix entries will be:

Ωi+1,i =
(N − i)µ

3

Ωi−1,i = iµ

Ωi,i = −(Ωi+1,i + Ωi−1,i) = −(N + 2i)µ

3

Ωelse = 0

And thus our transition matrix becomes:

Ω =



−Nµ
3

µ 0 0 . . . 0 0
Nµ
3

− (N+2)µ
3

2µ 0 . . . 0 0

0 (N−1)µ
3

− (N+4)µ
3

. . . . . . ...
...

0 0
. . . . . . . . . 0 0

...
... . . . . . . − (N+2(N−2))µ

3
(N − 1)µ 0

0 0 . . . 0 2µ
3

− (N+2(N−1))µ
3

Nµ
0 0 . . . 0 0 µ

3
−Nµ


k) Consider a DNA in its original state (i = N ). Using the above transition matrix, for N = 100
and µ = 10−3mutations

timestep
, calculate the mean �rst passage time from i = 100 to if = 90, 80, 70, 60, 50,

40, 30, 20, 10, and 0 (minimum self-similarity). What trends in the MFPT do you notice for the
DNA to get to increasingly dissimilar states?
Hint: −1 =

∑100
i′=0 Ωi′,iτi′→if for i 6= ic and τif→if = 0. To use this, �rst create Ω′ by the following

rules: Ω′j,i = Ωj,i for i 6= ic and Ω′j,ic = δj,ic . Next, create x = [−1, ...,−1, 0,−1, ... − 1] where
the ic entry of x is 0 and the length is N+1. Then let τ = [τ0→if , τ1→if , ..., τ100→if ]T , and �nally
solve Ω′T τ = x for τ100→if . Then repeat this process for the various if .

5


	Background
	Questions
	Modeling Similarity of a Single DNA Site
	Long-Run DNA Similarity Estimates: the Well-Mixed Binomial Approximation
	Simulating DNA Mutation and Similarity
	Mean First Passage Time to Varying Levels of Self-Similarity


