
BIOREPS Problem Set #12
Signal Transduction via Protein Kinase

1 Background
Cells communicate with each other in numerous ways, harnessing electricity and calling upon
hormones and neurotransmitters to send signals. Once these chemical messages are received, there
is still a long way to go before they can be transformed into a reaction. Within the cell there lies a
separate network of chemical modification pathways that allow the signals to propagate, amplify,
and carry out the intended action within the cell. These modifications are myriad, and include
methylation, acetylation, and our focus here, phosphorylation.

Phosphorylation is a common modification in signaling pathways, particularly the MAP kinase
pathway, playing a role in a variety of pathways initiated by everything from growth factors to
chemical indicators of stress. The process involves a kinase enzyme covalently modifying its
substrate through addition of a phosphate group, usually from some nucleotide triphosphate such
as ATP or GTP.

Figure 1: MAP kinase pathways. Image credit: http://cshperspectives.cshlp.org/content/4/11/
a011254/F1.expansion.html

In the generic MAP kinase pathway, a stimulus activates some receptor protein, initiating a
mechanism by which the first MAPK protein is phosphorylated. This kinase, in turn, phospho-
rylates the next MAP kinase protein in the pathway, and the chain of phosphorylation continues.
Eventually the final MAPK protein phosphorylates another protein, activating or inactivating it to
generate the appropriate biological response. Some pathways may include additional regulatory el-
ements, including phosphatase enzymes, which can remove covalently bound phosphate groups. In
this case, propagation of the signal depends upon the balance of addition and removal of phosphate
groups on each subsequent kinase.
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Enzyme-catalyzed reactions, such as the phosphorylation reactions occurring at each MAPK
step, often follow similar kinetic schemes. Commonly found is Michaelis-Menten kinetics, in
which the velocity of an enzymatic reaction varies hyperbolically with the concentration of the
enzyme’s ligand. The kinetics of signaling cascades, revealing the rates at which signals propagate
(and how quickly one can expect to see a particular biological outcome) may be investigated by
modeling each step in the pathway.

This problem set will explore the kinetics and propagation of a signal along its phosphorylation
pathway, taking into account the possibilities of phosphorylation and dephosphorylation at each
step.

2 Model
The focus of the analysis in this problem set will be an isolated 1D chain of protein kinases pre-
ceeded by a singal receptor. Stimulation of a receptor results in the activation of the kinases.
Phosphorylation is the signal output of this system and can be terminated by phosphatases through
dephosphorylation of the kinases [2]. Through the creation of a network and solving for the nec-
essary conditions of the rates of phosphorylation and dephosphorylation, we can observe some of
the dynames.

Figure 2: Model Network [2]

For this model, we describe the signaling cascade as a series of reactions between the phos-
phorylated form of a kinase, say kinase i-1, and the non-phosphorylated form of the next kinase,
kinase i. If kinase i-1 does not experience phosphorylation, then the signal is terminated. All of
these events are predicated on the stimulation of the original receptor. αi and βi are the rates of
phosphorylation and dephosphorylation respectively. λ is the inverse characteristic time during
which the receptor is activated. Xi(t) and X̄i(t) are the concentrations of phosphorylated and
dephosphorylated kinases respectively.
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Multiple assumptions must be made for this model to be practical. First, it will be assumed
that the concentration of each form of kinase will be small compared to the total concentration of
reaction partners. The total concentration of both forms of kinase must be held constant and this
total concentration will be defined as Ci = Xi + X̄i [2].

Finally, the concentration of all activated kinase i can be defined by the following differential
equation.

dXi

dt
= ᾱiXi−1X̄i − βiXi (i > 1) (1)

The rate of phosphorylation is given by the difference of two quantities. The first is the product
of the rate of phosphorylation by the ith kinase, the concentration of activated kinases in the ith
position, and the concentration of inactivated i kinases. The second is the product of the rate of
dephosphorylation by the ith phosphatase and the concentration of actived kinase form at the ith
position.
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3 Problems

Part A: Linear Signaling
i) Rewrite equation (1) in terms of αi, βi, Ci, Xi−1, and Xi. To do this, you will need to know that
αi = ᾱiCi. When i = 1, Xi−1 is replaced by R(t) = e−λt because it is preceeded by the receptor
rather than another kinase.

ii) Now take advantage of our assumption that the concentration of each form of kinase is very
small compared to the total concentration (Xi << Ci). Rewrite your answer from the previous
question. Your answer should be the following.

dXi

dt
= αiXi−1 − βiXi (2)
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Part B: Weakly Activated Pathways
In this section, the conditions necessary for signal amplification and, therefore, signal propogation
will be determined for this simple model from Part A.

Figure 3: Depiction of a signal and qunatities needed to analyze signal propogation [2]

Before we proceed, some things shown in Figure 3 will have to be defined. First, we define the
signaling time, τi, as the average time to activate kinase i. A signal can be imagined as depicted in
Figure 3 below.

< τi > =
Ti
Ii

(3)

Ti =

∫ ∞
0

tXi(t)dt

Ii =

∫ ∞
0

Xi(t)dt

Ti and Ii are the average time to activate the kinases and the total number of activated kinases up
to the ith kinase respectively. The average time to activate one kinase is given by the ratio of the
two quantities. The standard deviation of the mean activation time is given by Equation (4).

θi =
√
< τ 2i > − < τi >2 (4)

< τ 2i > =

∫∞
0
t2Xi(t)dt

Ii

Now it is apparent from Figure 3 that θi is one half the width of the signal. We can use this to
define the signal amplitude, S.
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Si =
Ii
2θi

(5)

Now that the properties of a signal can be calculated, the goal is to solve for the conditions of the
network that allow for signal propagation.

i) Start with Equation (2) and solve for X1, X2, and X3. Hint: Mathematica is highly recom-
mended (Specifically DSolve) and remember to substitute R(t) for Xi−1 when i = 1.

ii) Calculate S2 and S3 by using Equations (3,4,5). Hint: Mathematica is highly recommended. If
you used Mathematica or solved the differential equation three separate times correctly, just plug
the solutions into the equations above and perform the calculations.

You should find that Si has the following form (and that Ii and θi are the numerator and denomi-
nator respectively and Ao is a collection of a couple constants) from the pattern of S2 and S3.

Sn =

Ao
n∏
k=1

αk

βk√
1 + λ2

n∑
k=1

β−2k

(6)

iii) We want to solve for constraints on the model parameters αi and βi such that the signal am-
plitude remains the same or is amplified. To do this, subtract S2 from S3 and set this to be ≥ 0
and solve for β3 in terms of α3 and θ2. Hints: The algebra can be a little taxing here. First, factor
out as many things as you can and treat θ as a variable rather than plugging in its relation seen in
Equation (6) to save some steps at first. Then solve for β3 such that the amplitude will remain the
same and plug in for θi and solve for the value of β3 using Mathematica.

This generalizes for all βi and the solution has the following form.

βi ≤ αi

√
1 − 1

α2
i θ

2
i−1

(7)

If our network satisfies this criteria a signal will not be diminished through the chain.

Part C: Strongly Activated Pathways
Now we will consider pathways that are strongly activated. Pathways are considered strongly
actived if kinases are essentially permanently in the phosphorylated state. Substantial stimulation
of the receptor or αi >> βi can cause a pathway to be strongly activated. These are important to
consider because the previous approximation characterized byXi << Ci can no longer be applied.
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i) First, a permanently strongly activated system will be considered. Since kinases will be per-
manently activated, there will be no change in Xi. Go back to your solution to Part A i) and set
dXi

dt
= 0 and solve for Xi algebraically.

ii) The solution to the previous part shows that amplification, in this case, occurs when Xi > Xi−1.
Solve for the condition onXi−1 which allows for amplification. The solution should be of the form
of Equation (8).

Xi−1 < Ci(1 − βi
αi

) (8)

iii) We want to find a general form of Xi that does not depend on the recursive relationship of Xi

and Xi−1 until we reach the receptor and, instead, depends on the rates αi and βi. Write out X1

and X2 and show that X2 can be written in the form of Equation (9).

1

Xi

=
i∑

j=1

1

Cj

i∏
k=j+1

βk
αk

+
1

R

i∏
k=1

βk
αk

(9)

As described above, Michaelis-Menten kinetics are often used in modeling enzyme-catalyzed re-
actions. The general form of a Michaelis-Menten modeled equation is of the form:

Xi =
Xmax
i R

KM,i +R
(10)

Here, Xmax
i is the maximum possible concentration of Xi and KM,i is the Michaelis-Menten, or

half saturation, constant.

iv) Using Xmax
i = Ci, show Equation 9 can be written in Michaelis-Menten form (Equation 10).

Hint: Write out 1
X1

and 1
X2

from equation 9 and show that X2 follows this relationship. Generalize
this for all Xi. Use KM,1 = C1

β1
α1

and KM,2 = C2
β2
α2

( 1
C1

+ β1
α1

).

For weakly activated pathways, we saw that we needed βi < αi (Equation 7) in order for gradual
amplification of the signal to be observed. In contrast, we can see here that amplification depends
heavily on R (the concentration of the receptor) instead. These models provide a starting point to
continue to model more complex systems, including time-dependent signaling, cross-talk between
different pathways, as well as their stability in biological systems.

v) Plot your solution to part i vs R where α1 = 1, β1 = .3, and Ci = 1 for i = 1,2,3. Also, plot a
line such that Xi = x. Hints: Since λ = 0, just use R as the x variable. This is also easy to do
with a for loop in Mathematica.

Notice that longer chains reach the maximum for activated kinase concentrations at lower R.
Longer chains require less stimuli because amplification can perpetuate the signal. Also, note
that at R ≥ Ci(1 − βi

αi
), signals begin to dampen. This is consistent with our findings in Equation

(8).
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