
BIOREPS Problem Set #14
Are bacteria more e�cient than us?

1 Background

By now, you may have been persuaded that bacteria are evolutionarily superior to us humans.
This may or may not be true. Of course, it depends on how you approach the question. One per-
spective, perhaps, may be to compare how well bacteria adapt metabolically to the availability of
food in its present environment. In the 1940s, Monod observed that Escherichia coli growth rates
increased with the increasing glucose concentrations. Monod’s observation led to the develop-
ment of one of the most widely used models in describing bacterial growth. However, Monod’s
growth model, or any growth model for that matter, does not provide insight into underlying
evolutionary driving forces.[2] Fitness landscapes are mathematical surfaces that represent the
organisms �tness depending on some biological property that can change due to evolution over
time. These landscapes express the evolutionary principles for a given organism. Regardless of
their supposed superiority, bacteria cells are a good place to study these �tness landscapes. In a re-
cent PNAS paper, Maitra and Dill studied E.coli with the aim to determine whether E.coli bacteria
maximize their duplication speed or their energy e�ciency, or something completely di�erent.[1]
Ultimately, we want to relate the growth models and extensive growth data to �tness landscapes
so that we may obtain what evolutionary principles drive bacteria cultures. Perhaps, it may even
shed light on our question of superiority.

Upon studying various growth data, Monod described that bacterial growth has four distinct
phases: lag phase, exponential growth phase, strationary phase, and death phase. Each phase is
marked with a certain relationship between available nutrients and growth. The lag phase is ob-
served when bacteria are placed in a new environment that supplies di�erent nutrients than their
previous environment. In this phase, the bacteria is adjusting to the new environment by express-
ing the necessary metabolic proteins. Once the bacteria has adjusted, it enters the exponential
growth phase where the bacteria digests nutrients and seemingly dedicates the energy in�ux to
duplication. At a certain point, the growth slows down and eventually reaches the stationary
phase where the bacteria population becomes stagnant. The bacteria somehow recognizes that
the availability of nutrients can no longer support such fast duplication rates. In this phase, the
rate of growth is equal to the rate of death, where previously it was negligible. Finally, the de-
pletion of nutrients causes death to predominate over growth leading to the gradual decrease in
population.

In this problem set, we explore how bateria manage their energy in�ux to the production of
ribosomal (RPs) and nonribosomal (NRPs) proteins. During the exponential growth phase, bac-
teria duplicate all their proteins quickly which requires proportionately more ribosomal proteins
relative to the nonribosomal proteins. But the high costs of RPs are prohibitive when food is not
abundant, so the bacteria switches gears to the production of NRPs which may support better
management of energy. We will develop a mathematical model that will elucidate the evolution-
ary choices made by bacteria that we commonly observe as growth laws.
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2 Questions

2.1 Modeling E. coli’s Balance of Energy Flux and Protein Synthesis

Figure 1: Compartment model of E. coli, where λ represents the speci�c growth rate of E. coli,
and→Ø is the degradation of non-ribosomal proteins (the rate of which is γ). [1]

During the exponential phase of bacterial growth, the cells begin to grow and duplicate their
proteins as fast as they can within the limitations of necessary materials. In particular, the cells
create more ribosomes than other proteins during this process. A simpli�cation of an E. coli cell’s
rates of synthesis and degradation during this exponential phase is shown in Figure 1.

a) To begin the process of modeling an E. coli cell, a set of di�erential equations describing the
changes in concentrations of ATP, ribosomes, and non-ribosomal proteins (NRPs) must �rst be
developed.

i) Write a set of equations dR
dt

, dP
dt

, and dA
dt

using only the rates within the box of �gure 1 (so
excluding the speci�c growth rate of E. coli, λ).
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ii) Because this is the exponential phase, the E. coli cell is growing while the concentrations
of ATP, ribosomes, and non-ribosomal proteins change. This in turn a�ects the concentrations of
these molecules within the cell. How will the concentrations change as the cell grows? Starting
with the equations from part i), factor the cell growth rate, λ, into each of the equations.

iii) During the exponential phase, over 80% of ATP in the cell is used to create proteins and
ribosomes. Therefore, mr and mp, the stoichiometric numbers of ATP molecules needed to make
ribosomes and NRPs, respectively, are 1 for dR

dt
and dP

dt
. Setmr andmp equal to 1 for both of these

equations.
iv) Using Mr, the molecular weight of RPs per ribosome, and Mp, the molecular weight of

an NRP, write an equation describing the total protein density of the cell, ρ.

b) Recall that the �ux of something can be represented as the product of its rate coe�cient, its
concentration, and a function that represents how the concentration changes, so if we are looking
at the concentration of chemical X, J = kf(x)X .

Let kr and kp be the rate coe�cients of ribosomes and NRPs, respectively, and let fr[A(G)]
and fp[A(G)] be the functions for ribosomes and NRPs, respectively. Write the �ux equations for
ribosomes and NRPs, Jr and Jp.

c) Find the steady state equations of the 3 di�erential equations from part a). Find an equation
for λ in terms of Jr and plug in the �ux equations from part b).

2.2 Deriving Monod’s Growth Law

Monod’s growth law is similar to the Michaelis-Menten equation, but there is a key di�erence:
Monod’s growth law is empirical while the Michaelis-Menten equation is theoretical. The Monod
equation is µ = µmax

S
Ks+S

where µ is the growth rate, µmax is the maximum of said grwoth rate,
S is the concentration of the limiting factor, and Ks is the value of S when µ

µmax
= 0.5.

a) From part 2.1c, we have the steady state equation created by dA
dt

in terms of mr, mp, ma, kr,
mp, ma, fr, fp, R, and P . Rewrite this equation in terms of mr, mp, ma, mp, ma, fp, λ, and γ.
(Hint: look at the other state state equations–what does R

P
equal?)

b) In part 2.2a, you should have gotten a quadratic equation in terms of λ (i.e. aλ2 + bλ+ c = 0).
To simplify the result, you can write λp = mpkp

mr
and λa = maka

mp
. Write out the quadratic equation

in terms of λ, λa, λp, γ, and fp.

c) We can also write λa in terms of λ. λa is a function of ka, and ka = k∞a fg(G)fa(A), fg(G) =
G1.5

G1.5+D1.5
g

, and fa(A) = Da
Da+A

. To rewrite A in terms of λ, we can rearrange fr(A) = f∞r (1− Dr
A

)

solving for A using the steady state equation created by the di�erential of dR
dt

in both the average
case, fr, and the ATP saturated case f∞r . First, write A in terms of λ, then write λa in terms of λ.

d) By now, we have a quadratic function in terms of λ, λa, λp, γ, and fp, and we have λa in
terms of λ, so we can write the quadratic in terms of λ, λp, γ, and fp. This will result in a
cubic function of λ, where the coe�cients, in no particular order, are −1, δλ∞ − λpf

∞
p − γ,
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λpf
∞
p [λ∞a ( G1.5

G1.5+D1.5
g

) + δλ∞− γ] + δγλ∞, and λ∞λpf∞p [δγ−λ∞a ( G1.5

G1.5+D1.5
g

)]. In these de�nitions,
δ = 1 + Dr

Da

e) The cubic function of 2.2d generates 3 real roots for γ, but only one is the observed glucose
dependence of the speci�c growth rate, λ(G), following the Monod Law. Varying G from 10−3
to 1, set λ∞ = 1, fp = 0.7, Dr = 0.18, Da = 4, γ = 0.1, λ∞a = mak∞a

mp
, ma = 30, mp = 1950,

k∞a = 120, Dg = 0.07, and λp = 5. In Matlab, use the function roots, and get a matrix of the 3
roots, each row refering to a set of roots. Plot the 3 roots agains the G values, and decide which
set of roots–row 1, 2, or 3, is the correct set of roots. Why is this value of roots correct for λ, the
growth rate of E. coli?

2.3 Cells Are Optimized for Energy E�ciency of the Fast-Growing Cells
and Not Growth Rates of E�ciency Alone

Now we will try to determine under what conditions E. coli’s energy e�ciency is optimized. We
de�ne its energy e�ciency as the mass �ux of all proteins produced divide by the molar �ux of
ATP synthesized, ε(λ, fp) = ρλ

maJa
. We can then substitute the equation maJa = mrJr +mpJp to

eventually get the equation ε(λ, fp) = λ

Φ[ λ
εr

+
k′pfp
εp

]
where Φ = λ+γ

λ+γ+k′pfp
. The term in the square

brackets is the total cost of synthesizing all proteins per unit time per ribosome, both RP and NRP.
Further substitution can be done to eliminate k′pfp. ε =

λ
λ+γ

λ
λ+γ

Φ
εr

+ 1−Φ
εp

. Finally we assume that some

constants are �xed by physical limits. That is, there is nothing that evolution can do to further
optimize these constants. These constants are protein synthesis k′p, degradation γ, ribosomal
assembly kr and relative costs of P vs. R, εp

εr
.

a) Using the quations λ∞ = krf
∞
r and f∞p + f∞r = 1 �nd an expresion for d

df∞p
(ε(λ∞, f∞p )) in

terms of f∞p and not λ∞

b) Graph ε vs. f∞p and �nd its maximum, where d
df∞p

(ε(λ∞, f∞p )) = 0. Use k′p = 10, γ = 0.1,
kr = 5, εp = 18, εr = 9 as the values for constants.

2.4 The Cells Shifts Energy Flows Under Di�erent Growth Conditions

In the previous part, we have found the cells are optimized for maximum energy e�ciency, at fast
growth. This means that the cells are evolutionary optimum when they create a balance between
growth rate and energy e�ciency by splitting the production of certain fraction of ribosomal and
non-ribosomal poteins.

However, the cell is not always at its optimum state. As mentioned in the introduction,
the cell growth cycle involves a total of 4 phases, and the growth condition is di�erent for a
di�erent phase. In this part, we will see how this model corresponds to the changes in growth
conditions. We will �rst start by plotting our model’s variables against Glucose concentration
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(G), using Monod law solution, obtained in 2.2. (Note: Even if you did not get 2.3, you will still
be able to complete 2.4)

a) First, plot the graph of energy e�ciency, ε against Glucose concentration, G (vary G from 0.01
M to 1 M).

Hint : Modify your code from 2.2 to produce only the correct solution that corresponds
to Monod’s law. Then use this solution for λ in the equations mentioned in 2.3, i.e. ε(λ, fp) =

λ

Φ[ λ
εr

+
k′pfp
εp

]
with Φ = λ+γ

λ+γ+k′pfp
. Use values γ=0.1, k′p=10, fp=0.7, εr=9, εp=18

b) The energy e�ciency function can further be broken down into two components correspond-
ing to individual e�ciency contributions of R and P. The energy e�ciency from (a) part then can
be written as : ε = ε′r + ε′p = εrjr + εp

λ
λ+γ

jp, where jr = jr(λ) = λ
λ+λpfp

and jp(λ) = 1− jr(λ)

On the same plot obtained from part (a), plot the individual e�ciencies (ε′r and ε′p) against
Glucose concentration (G)

Hint : Again, modify the code to substitute λ in each equation obtained from the solution
of Monod’s growth law from 2.2

c)Recall that ribosomal proteins carry out the growth of the cell, while NRPs catalyze the metabolism
reactions including the biochemical conversion of glucose to ATP. RPs are used in replication,
hence there chances of degradation are small, while NRPs need to degraded and formed at all
times. The fraction of ATP �ux used for NRP synthesis can be split between dilution and degra-
dation. The fraction of degraded NRP can be given by : Degd = (γ)(P )/(Jp) and the fraction of
diluted NRP will be given by Dilt = 1 - Degd.

Plot the two fractions on a single plot against concentration of Glucose, G.

Hint: Use rate equation from 2.1 (b) and (c), and �nd the two fraction functions in terms of
λ. Again, use Monod’law solution to plot the functions against G.

The plots obtained above can be interpreted as the following : Under slow growth condi-
tions, small Glucose concentration (hence small λ), the cell is not e�cient at converting energy
to ribosomes or proteins. Most of the proteins being made by the cells are NRPs. But as it can be
seen from plot of part (c), the NRPs degradation rate is very high under slow growth. Hence, most
of the NRPs made are being degraded in the cell. thus, the cell is saving its energy by not making
attempts to grow, but rather replenishing the NRPs. Under fast growth conditions, large Glucose

concentration, the cell has switched gears, and the energy e�ciency of the cell is signi�cantly
greater. Part (c) plot also shows that under fast growth, the degradation fraction of the NRPs is
signi�cantly small, so less of the cell’s energy is devoted to repairing degrading proteins. Now,
the cell converts more sugar directly to cell growth.

d) It would make sense if the increasing sugar leads to an upshift of the production of ribosomes
relative to NRPs, since, ribosomal proteins are the ones ’directly’ responsible for the growth of
the cell. Show that φ, mass fraction of all cellular proteins that are ribosomal, increases ’approx-
imately’ linearly with λ under fast growth. Hint : Use φ = MrR

MrR+MpP
to begin with and then use
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justi�able approximations (including k′pfp >> λ+ γ) at fast growth.
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