
BIOREPS Problem Set #7
Models of Tumor Progression:
Two-Type Branching Processes

Figure 1: Schematic of the cell cycle. During Mitosis, somatic cells undergo division of cellular
contents. The cellular membrane is then completely cleaved during cytokinesis resulting in the
production of two ’identical’ daughter cells. Most cells enter the G0 phase to carry out biological
functions while others continue through the remaining three phases in preparation for another
mitotic division. Image Credit:http://www2.le.ac.uk/departments/genetics

1 Background

Cell division plays an important role in maintaining an equilibrium of cells within the body. The
division process is controlled by the cell cycle (Figure 1) that has checkpoints in place that mediate
progression between the di�erent phases. Most cells in the body are found in the G0 phase and
are not actively dividing but are simply carrying out their biological functions. When needed,
the cells can leave the G0 phase and can continue through the cycle in preparation for another
round of division. Once ready, the cell undergoes mitosis and the original parent cell divides into
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two daughter cells. The daughter cells then have the option of returning to the G0 phase where
the parent cell originally was, or to continue on in the cycle and repeat the division process. This
continuing cycle is under strict regulation to ensure proper cell production is achieved.

The two daughter cells produced during each mitotic division are supposed to be identical to
one another so that homogeny is conserved. However, variation can be introduced in a variety of
ways. An array of mutations can be introduced during the S phase of DNA replication, they can
be as minor as a nonsense or as serious as a missense mutation. Other sources of variation can
occur during mitotic recombination or in the event of nondisjunction. Variation can be bene�cial
to organisms as it is at the heart of evolution. However, the bene�ts of variation also comes
with a price. A mutation introduced to any part of the cell cycle can result in the formation of
cancerous cells. The mutation does not have to be directly a result of reproduction error, but can
also take form through exposure to carcinogens or other disease causing antigens. The formation
of cancer cells are usually not due to the result of a single mutation but rather encompasses an
array of mutations that later e�ect the kinetics of the cell cycle.

Cancer cells are distinguished from normal cells in that they continually and uncontrollably
divide. The amount of time they spend in theG0 phase is characteristically low when compared to
that of a normal cell. In addition, the checkpoints and regulations that normal cells follow when
proceeding through the cell cycle are dysfunctional in cancer cells. In order to proceed in the cell
cycle, cells must meet requirments are three di�erent checkpoints throughout the cycle. The G1

checkpoint ensures the accuracy in the newly synthesized DNA strand, later on, the G2 check-
point ensures proper chromosome duplication has occured, and �nally, the M checkpoint ensures
the proper attachment of kintechore �bers before the cell undergoes mitosis. Unlike healthy cells,
Cancerous cells can compromise the chekpoints and can pass through with reduced regulation.
This results in the continuous and uncontrollable division process previously described. The con-
tinual division results in masses of cells called tumors. These clumps of cells fall into one of two
classi�cations. Benign tumors are composed of cells that are non-invasive and continue to grow
within a centralized location. While these tumors can be troublesome, they are often less lethal
than their counterpart. Malignant tumors on the other hand, are invasive and have the ability
to spread throughout the body. They can enter blood vessels or even lymphatic nodes through a
process called intravasation. Once they have penetrated these systems, the malignant tumor cells
can be transported and then introduced to new parts of the body where they can be deposited
through a process called extravasation. The malignant tumor cells can then continue their rapid
cellular division and grow into tumors by utilizing the entire body as a resource of energy to fuel
their wild cellular division (Figure 2). The focus of this problem set will be to create a physical
model that can be used to describe the range of tumor progression as well as the kinetics of cell
death while focusing on simple cases to develop this framework.
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2 Questions

2.1 Simple model for cellular division and mutation
We can create a general model for these processes of cellular proliferation, mutation, and

death. Using A to represent progenitor cells, or cells that might mutate irreversibly into another
cell type, and B to represent that mutated type, we can summarize this birth/death process using
the rates

A → AA rate α1

A → Ø rate β1
A → B rate ν
B → BB rate α2

B → Ø rate β2.

(1)

Given a single initial A cell, we can model the probability distribution Pm,n(t) representing
the likelihood of �nding m copies of A and n copies of B at some time t. We can set the division
rate of A, α1, to be 1, simply rescaling time increments to achieve this simpli�cation.

a) Using this shorthand notation for the rate di�erences

λ1 = 1− β1 − ν
λ2 = α2 − β2

(2)

Figure 2: Schematic of Malignant Tumor Cells utilizing the circulatory system as a means of
transportation throughout an organism. Intravasation is the process of the malignant cancer
cells entering the circulatory system, they then circulate and then return to the body through
a process called extravasation. This results in the formation of tumors away from the primary
tumor site. Image credit: Figure 14.4 The Biology of Cancer (©Garland Science 2007) .
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which can be thought of as the �tness values for each cell type. A can be thought of as
representing a benign tumor cell; upon acquiring another mutation, it transforms into a malignant
B cell. Given that the average number ofA cells, m, and the average number ofB cells, n, follow
the rate equations

d〈m〉
dt

= λ1〈m〉

d〈n〉
dt

= ν〈m〉+ λ2〈n〉
(3)

Starting with oneA cell (〈m〉(0) = 1) and given 〈n〉(0) = 0, solve (3) to �nd equations for 〈m〉 and
〈n〉 de�ned in terms of ν, λ1, and λ2.

b) The dynamics of the two-type branching process is found using probabilities satisfying the
forward and backward Kolmogrov equations. After taking into account all possible transitions
for an initial A or B cell and taking the limit of tau going to zero, we have the following rate
equations.

dPA
m,n

dt
= PAA

m,n + β1δm,0δn,0 + νPB
m,n − (1 + β1 + ν)PA

m,n

dPB
m,n

dt
= α2P

BB
m,n + β2δm,0δn,0 − (α2 + β2)P

B
m,n

(4)

Using the generating function

P(x, y, t) =
∑
m,n≥0

xmynPm,n(t) (5)

show that equation (4) can turn into the pair of coupled non-linear ordinary di�erential equa-
tions below.

δtA = A2 + β1 + νB − (1 + β1 + ν)A
δtB = α2B2 + β2 − (α2 + β2)B

(6)

with initial conditions

A(x, y, t = 0) = x

B(x, y, t = 0) = y

c) From the master equation we can obtain the following di�erential equations:

∂A
∂t

= A2 + β1 + νB − (1 + β1 + ν)A (7)

∂B
∂t

= α2B2 + β2 − (α2 + β2)B (8)
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with initial conditions

A(x, y, t = 0) = x

B(x, y, t = 0) = y

The equation for B is easy to solve. Its solution is given by:

B = 1− λ2
α2(1− z)

, z = [1− λ2
α2(1− y)

] exp−λ2t (9)

However A is more complicated. Plug the solution for B into the di�erential equation for A
and de�ne X = 1 −A. This new di�erential equation is called a Riccati Equation. Additionally
it is useful to know that λ1 = 1− β1 − ν.

Let us now de�ne X ≡ d
dt

logZ = 1
Z
dZ
dt

. Use this de�nition for X in our Riccati Equation
to get a new di�erential equation in terms of Z . Additionally, you should multiply by Z and
disregard higher order terms. This di�erential equation is called the Sturm-Liouville Equation.

The end result of all this mathematical manipulation is the following:

d2Z

dt2
= λ1

dZ

dt
+

νλ2
α2(1− z)

Z (10)

Let us assume a solution of the form:

Z(t) ≡ zω/λ2Φ(z)

Where ω will be de�ned later. Using this ansatz in our di�erential equation we derive a
solution in terms of the hypergeometric functions. It has two linearly independent solutions.
Thus,

Φ(z) = F (a, b; c; z) + Cz1−cF (−b,−a; 2− c; z)

Where the functions F are the hypergeometric functions. And:

a =
ω

λ2
, b =

ω + λ1
λ2

, c = 1 +
2ω + λ1
λ2

, ω = −λ1
2

+

√
(λ1
2

)2 +
νλ2
α2

Using our previous de�nitions, write the function A in terms of Φ. If we wish to write A
in terms of the hypergeometric functions we must �rst take the derivative of a hypergeometric
function. The following de�nes the derivative of the hypergeometric function:

d

dz
F (a, b; c; z) =

ab

c
F (1 + a, 1 + b; 1 + c; z)

Using this result writeA in terms of the hypergeometric functions and the unknown constant
C . Thus, we have derived a solution for A which gives us the generating function for an initial
A cell. Therefore, we have solved our di�erential equations for A and B.

d) Calculation of probability densities from generating functions
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Now that we have derived generating functions for both A(x, y, t), the general case of A and
B cells given a single initial A cell, and B(y, t), the case of just B cells given a single initial B cell,
we will show how to use these generating functions to calculate probability densities. To develop
our understanding, we will focus on the bi-critical B(y, t) generating function

B(y, t) =
(y + α2t(1− y))

(1 + α2t(1− y))
(11)

and show how to both analytically and numerically compute probabilities, Pn(t). The concepts
here apply generally to the conversion between generating functions and probabilities regardless
of how complicated the generating function is or the number of dimensions.

First, let’s return to a general de�nition of our generating function:

B(y, t) ≡
∞∑
n≥0

ynPn(t). (12)

This probably looks quite intimidating to the uninitiated, but if one is familiar with discrete
Fourier transforms one can quite easily convert by substituting y = e−iθ,

B(e−iθ, t) =
∞∑
n≥0

e−inθPn(t). (13)

We note that B(e−inθ, t) is periodic with θ and that we can fully describe the function over the
interval θ = [0, 2π]. Thus, when discretizing θ for our numerical implementation we choose
θk = 2πk/N where N is the number of samples and k = 0, 1, 2, , N − 1. This discretized
B(e−iθk , t) corresponds to a truncated Pn(t) with N samples which is implicitly assumed to re-
peat in�nitely outside of the k = [0, N − 1] window (this is the typical discrete-time Fourier
transform assumption). This gives us

B(e−iθk , t) =
N−1∑
n=0

e−ink2π/NPn(t). (14)

Thus,B(e−iθk , t) and Pn(t) are, in the large N limit, Fourier transform pairs. This also means that
there exists an inverse discrete Fourier transform of B which can transform back into Pn(t),

Pn(t) =
1

N

N−1∑
k=0

eink2π/NB(e−iθk , t). (15)

This relationship holds for conversion of any generating function to the corresponding prob-
ability density. In this way, we can use the very powerful general function, A(x, y, t), the prob-
ability of m cells of type A and n cells of type B, to determine Pm,n(t) by two inverse discrete
Fourier transforms over x and y. Theoretically, we could compute the probability density for any
number of cells of any number of cell types, provided the generating function is well de�ned.
However, here we will focus on the simpler generating function B(y, t) for the bi-critical case
and demonstrate that the Fourier transform approach yields the expected results for short time
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(t = 0) and long time (t→∞).

1. Show that P0(t = 0) = 0, P1(t = 0) = 1, P0(t → ∞) = 1, and P1(t → ∞) = 0 using
the inverse discrete Fourier transform. First, �nd the limit of B(e−iθk , t) at long and short times
and then compute the probabilities analytically with N = 2. Keep in mind the Euler relation
e−iπ = eiπ = −1.

2. Compute Pn(t) at t = 0,t = 1,t = 10, and t = 100 using the numerical implementation of
the inverse Fourier transform with N = 16, α2 = 0.1. Essentially, compute a vector B(e−iθk , t)
and perform the inverse Fourier transform (i�t in Matlab). Plot your results and describe what
happens to the distribution Pn(t) at the short time, long time, and intermediate times.

e) Calculation of critical B cell behavior from Kolmogorov equation
The above bi-critical equation (11) demonstrating the behavior of criticalB cells can be calculated
from equation (9) by determining when λ2 = 0. Verify the solution of equation (11) by calculating
the limit λ2 → 0 of equation (9). Hint: you will get an indeterminate form, so recall L’Hopital’s
Rule and di�erentiate before taking the limit.
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