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Of Protein Carts and DNA Railroads: Helicase Unwinding of DNA

1 Introduction

Figure 1: A schematic of the process of DNA replication

The biological world is hallmarked by the singularly critical process of proliferation- the abil-
ity to generate progeny capable of maintaining homeostasis and carrying out the multitude of
physiological processes that mark the species including further reproduction. The building blocks
in all living organisms - cells - must then be capable of duplication. The process of cell division is
guided by the need to preserve functionality and sustenance in both the mother and the daughter
cell. The progenitor and the progeny thus both need to be equipped with their own sets of genetic
material leading to the need for DNA replication. Nature has in place stunningly sophisticated
cellular micro-architecture to ensure this replication of a cell’s genome during cell division giving
rise to two self-contained, complete units.

A DNA molecule is made up of two individual strands, each with a sugar-phosphate backbone
on which are mounted the nucleobases. The two strands are linked by hydrogen bonds between
the complementary bases. This assignment deals with the �rst step in this replication process:
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the "unzipping" of the parent molecule (hereby referred to as dsDNA-double stranded DNA) into
its two constituent strands (ssDNA- single stranded DNA) by the rupture of the hydrogen bonds
between the base pairs. A special kind of motor protein carries out this task: the helicase pro-
tein. ssDNA are polar molecules, with an inherent directionality de�ned by the exposed sugar
phosphate backbone. Helicase proteins are capable of utilizing this electric gradient to propel
themselves along the ssDNA strand. Along the way, they might encounter obstacles in the form
of zipped segments (two complementary or neighboring ssDNA strands linked to form an ss-ds
junction). The helicase can transduce and channel energy from ATP hydrolyses to move one ss-
DNA relative to the other, causing a rupturing of the junctions and forming an ′unzipped′ chain.
It then moves along this new added segment to its track and continues on. The problem can be
summed up in a line as: motion of a motor protein ′cart′ on a mobile DNA ′railroad′.

2 Background Model: the Helicase-DNA System
This assignment closely follows the treatment from a 2003 study on the working principles of a
general bio-motor advancing against a mobile obstacle [1], in which helicase unwinding of DNA
has been chosen as a particulary illustrative example. The position of the motor protein helicase,
indicated by the nucleobase to which it is bound, is labelled by the integer index n. The ss-ds
′obstacle′ junction is labelled by the integer m.

Figure 2: A Schematic of the Helicase-DNA unwinding system. Im-
age courtesy: The Stat May Qual Question β, CWRU Physics, 2015

The interaction between
the helicase and the ss-
ds junction that leads to
subsequent unzipping can
be characterized by an in-
teraction potential U(m-n),
reasonably assumed to de-
pend only on the helicase-
junction separation along
the strand. The simplest
possible choice for U(m-n)
would be a hard wall po-
tential U = 0 for m > n,
and U→∞ form≤n. This

would completely deter the helicase from moving on the DNA beyond the junction. In this case,
further motion is only possible if some �uctuation in m can reverse the inequality. This could be
facilitated by thermal oscillations (the ertswhile ′Brownian ratchet′ [2]) or other ways in which
�uctuations can be induced in externally applied energy �elds ([3],[4] and [5]). A far more re-
alistic model for biological systems like the motor protein system here would be softer potential
with a �nite range. When the helicase advances to the ss-ds junction, the interaction between
the helicase and the junction acts as a catalyst that a�ects not just the motion of the helicase, but
also the kinetics of the the ′unzipping′. Following our reference [1], we will derive analytical ex-
pressions for the speed of unwinding and how it is a�ected by the interaction strength, as well as
discuss various biologically-relevant limits on such speeds and the enzymatic e�ect the presence
of the helicase at the junction has on this process.
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Figure 3: An artist’s impression of Helicase unwinding a DNA strand. Source: Nature Scitable,
"Cells Can Replicate Their DNA Precisely"
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3 Questions

3.1 Interaction-dependent Rates

For the ease of analysis and in keeping with the coarse-grained nature of the available exper-
imental data, we will design a discrete system where both the helicase and the ss-ds junction
can only move in �nite jump steps. We denote the forward and backward hopping rates of the
helicase protein (away from the ss-ds junction) by k+ and k−, respectively. The corresponding
forward and backward rates for the junction are α and β. If E is the free energy di�erence per
base between the dsDNA and its two constituent ssdNA strands, detailed balance would then im-
mediately dictate α/β = e−E/kBT . On a similar note, we can state that k+/k− = e∆µ/kBT , where
∆µ is the chemical free energy of ATP hydrolysis (i.e the fuel for the motion of the helicase cart).

a) The interaction between the helicase and the ss-ds junction is now given by the earlier in-
troduced U(m − n). Using the above information, justify with appropriate reasoning how the
interaction-dependent hopping rates will now obey:

βj
αj−1

=
β

α
e−[U(j−1)−U(j)]/kBT (1)

k+
j

k−j−1

=
k+

k−
e−[U(j−1)−U(j)]/kBT (2)

αj , βj , k+
j and k−j are now the position-dependent rates, and j = m−n is the helicase-junction

separation index.
Hint: The interaction will introduce new terms in the system’s Hamiltonian.

Equations (1-2) show us that for our initial consideration of a hard wall potential, β1 = 0 at
the wall, but also k+

1 = 0. So while the helicase is able to prevent the ss-ds junction from closing
in further beyond j = 1 (or m = n + 1), it also is not able to move and can do precious more
than being a guard-dog. To make things more interesting, we soften the interaction potential
and lend it a �nite range. We will see how this now allows for the helicase to participate in
enzymatically-assisted unwinding of the DNA.

3.2 Mastering the Master Equation

To preserve the simple discrete nature of the system, we impart a �nite range to the interaction
potential in discrete steps ofN , each of strength U0 (Fig.2). This now allows the helicase to take a
�niteN number of steps beyondm = n before it reaches the junction, given it can keep counter-
acting the obstacle potential steps. The helicase can use energy from ATP hydrolysis to further
in�uence the speed of the junction, causing it to split the DNA faster. However, this energy of
interaction also acts as a check on the helicase motion, preventing it from progressing along the
DNA chain too quickly. This trade-o� thus leads to an optimum situation for unwinding.
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a) Having de�ned the local rates, let us label the state of the system at any time t by the numbers
j and l; where j = (m − n) and l = (m + n). j determines the interaction potential, while
the center of motion variable l incorporates the mobility of the ss-ds junction itself. Show that
for each hopping time step δt, the system can change in only one of four ways. What are the
corresponding transition probabilities?
Hint: Think of all the possible combinations, the displacement can happen in this scenario, in
terms of j and l.

b) Put the above results together to show that the master equation for P (j, l, t) becomes:

∂P (j, l)

∂t
= −(αj + βj + k+

j + k−j )P (j, l) + αj−1P (j − 1, l − 1)+

βj+1P (j + 1, l + 1) + k+
j+1P (j + 1, l − 1) + k−j−1P (j − 1, l + 1)

(3)

Earlier, we saw how the hopping rates depend only on j. With this prior knowledge, it would
make sense to eliminate l by summing over to obtain Pj =

∑
l P (j, l). This j dependent proba-

bility relaxes to a stationary state distribution with a characteristic time scale determined by the
free state hopping rates α, β, k+ and k−.

The interaction potential is constrained by i) U → 0 for j → 0 and ii) U → ∞ for j → ∞.
These limits ensure physically realistic conditions of no interaction for large separations, as well
as always ensure the helicase is located on the ssDNA strand. The relevant regime of interest is
thus in the locality of the ss-ds junction.

c) Noting that the potential blows up as j → −∞, show that the stationary state solution can be
described by the recursion relation:

Psj+1 =
k−j + αj

k+
j+1 + βj+1

Psj (4)

3.3 Unzipping Rates

a) Using the appropriate transition/ unwinding rates and the probability of �nding the helicase-
junction system at the corresponding separations, we can obtain an expression for the the ef-
fective unwinding rate at the di�erence variable j in terms of k+

j , αj , k−j and βj . Show that the
expression for mean velocity (bp/ sec) of DNA opening can be written as:

v =
1

2

∑
j

(k+
j + αj − k−j − βj)Pj (5)

Make note of the fact that there two directions the ss-ds junction position can move in.

b) If now a hard wall potential (i.e N = 0) at j = 0 is considered, then k+
1 = β1 = 0. The proba-

bility distribution for j > 0 can now be taken in the form Pj = Acj , where A is a normalization
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constant and c = (α + k−)/(β + k+). Show how the average velocity for the simple hard wall
case becomes:

vavg,HW =
αk+ − βk−

β + k+
(6)

vavg,HW will be positive whenever k+/k− > β/α is satis�ed. This corresponds to whenever
the free energy di�erence E (recall how it is the driver of the unwinding process) is smaller than
the chemical free energy gradient from ATP hydrolysis ∆µ.

Let us now make our �rst improvement on this scenario, notching N up to N = 1, i.e a one
step potential. The potential strength is now given by U0 ≡ [U0 − U(j = 1)/kBT ]. The helicase
can then cross and overcome the junction barrier if it can harness enough energy to match this
U0. While we already know the ratio of the hopping rates from Eqns (1-2), the actual values of
the rates are determined by the energy gradient between the states U(j = 1) and U(j = 0).
While the actual details of incorporating the energy gradient into the interaction energies could
be quite involved, a simple way to factor it in and qualitatively study its e�ect would be via a
dimensionless coe�cient f where 0 < f < 1. f is a measure of the strength of the gradient, and
the hopping rates can be modi�ed to the forms:

k+
1 = k+e−fU0 (7)

k−0 = k−e−(f−1)U0 (8)

β1 = βe−fU0 (9)

α0 = αe−(f−1)U0 (10)

c) We can now study the dependence of the velocity on this interaction strength gradient. De-
noting the new average velocity by v1, it can be shown that the velocity increase of the one-step
potential case relative to the hard wall case will be given by,

v1

vHW
=
c+ (1− c)e−fU0

c+ (1− c)eU0
(11)

Plot this ratio versus the step height, for some representative values of f , and qualitatively discuss
the behaviour of the graphs. What factors could account for/ explain the initial increase and then
the decrease of the ratio with increase in step height?

d) From the nature of the unwinding rate versus step height strength plots, it is clear that for
any set of parameter values for f and c, there is a maximum unwinding rate obtained at a certain
barrier height. Let us denote this barrier height by U0 = U∗. We can now obtain U∗ from the
relation:

feU∗ − efU∗ =
(1− c)(1− f)

c
(12)

Use Eqn (12) to show that the one-step potential unwinding rate has an upper bound given by:

v1,max =
vavg,HW

c
=
αk+ − βk−

α + k−
(13)
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e) Bonus Question:

For N > 1, the interaction potential is divided into N identical steps, each of step height U0.
In an identical manner as v1, we can obtain the ratio of the N -step unwinding rate vN relative to
the hard wall case as,

vN
vHW

=
cN + (1− c)e−(f−1)U0

∑N
j=1 c

N−je−jU0

cN + (1− c)
∑N

j=1 c
N−je−jU0

(14)

It is easy to check this reduces to Eqn (11) for N = 1. Show plots of this unwinding rate ra-
tio versus the step strength U0 for N = 1, 3 and 5. You will see how the opening rate starts
becoming more and more sensitive to U0 with increasing N . For large N , the unwinding rate
starts approaching U∗ ≈ −lnc ≈ −lnαβ . Thus we can conclude that the optimal step height tends
to the free energy gradient of opening of one base pair. The fastest possible opening will then
occur with compatibility between the interaction energy of the helicase-junction unit, and the
base-pairing energy of the DNA nucleotide units (which is just what we would expect - so we
can now rest easy our model is not completely nonsensical!!)
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