term 1 = \[\sum_{m,n} p_{mn}(t) \ln p_n(t) - \sum_{m,n} p_{mn}(t) \ln p_{m(t+\Delta t)} \]

= \[\sum_n p_n(t) \ln p_n(t) - \sum_m p_m(t+\Delta t) \ln p_m(t+\Delta t) \]

using fact that:
- \[\sum_{m,n} p_{mn}(t) = p_n(t) \]
- \[\sum_n p_{mn}(t) = p_m(t+\Delta t) \]

Define the "entropy" of the system:
- \[S(t) \equiv -k_B \sum p_n(t) \ln p_n(t) \]

Note: \(S(t) \geq 0 \) since sum of negative terms times \(-k_B\) is always \(0\) for \(0 \leq p \leq 1\).
Physical meaning of entropy: \[\text{[Gibbs/Shannon]} \]

\[S(t) = -k_B \sum_n p_n(t) \ln p_n(t) \]

quantifies our degree of uncertainty about the state of the system at time \(t \).

Total certainty \(\Rightarrow \) \(p_n(t) = \begin{cases} 1 & \text{for } n = m \\ 0 & \text{for } n \neq m \end{cases} \)

(state is \(m \) at time \(t \))

\[S(t) = 0 \quad (x \ln x \text{ as } x \to 0 \text{ is zero}) \]

Total uncertainty \(\Rightarrow \) \(p_n(t) = \frac{1}{N} \) for all \(n \)

(all states are equally likely at time \(t \))

where \(N = \# \text{ of states in system} \)

\[S(t) = -k_B \sum_n \frac{1}{N} \ln \frac{1}{N} \]

\[= -k_B N \frac{1}{N} \ln \frac{1}{N} \]

\[= k_B \ln N \quad \text{[Boltzmann definition of entropy]} \]

In general, \(0 \leq S(t) \leq k_B \ln N \)

minimum possible entropy

max. possible entropy
Sidenote: entropy as a measure of distribution "width"

\[S = 0 \]

\[P_n(t) = \begin{cases} 1 & n = m \\ 0 & n \neq m \end{cases} \]

\[S_{\text{max}} > S > 0 \]

\[S = S_{\text{max}} \]

\[\text{max. entropy} \]

\[S_{\text{max}} = k_B \ln N \]
For term 2, we need DB condition:

\[
\frac{\Omega_{mn}}{\Omega_{nm}} = e^{-\beta \left(E_m - E_n + P(V_m - V_n) + W_{mn} \right)}
\]

- work done against water pressure \(P \)
- other work terms (included for generality)

\(Q_{mn} \)
- heat energy absorbed from environment in \(n \to m \) transition

\(E_m - E_n \)
- change in state energy

\(P(V_m - V_n) \)
- work against pressure

\(W_{mn} \)
- other work
note: work \(\Rightarrow \) system does work on environment
heat defined:
\[Q_{mn} = E_m - E_n + P (V_m - V_n) + W_{mn} \]
\[\Omega_{mn} = e^{-\beta Q_{mn}} \]
\[\Omega_{nm} = \frac{\Omega_{mn}}{\Omega_{nm}} \]
\[\text{term 2} = \sum_{m,n} P_{mn}(t) \ln \frac{\Omega_{mn}}{\Omega_{nm}} \]
\[= -\frac{1}{k_B T} \sum_{m \neq n} P_{mn}(t) Q_{mn} \]
\[= -\frac{1}{k_B T} \langle Q \rangle_t \]
\[\text{where} \quad \langle Q \rangle_t = \text{mean heat absorbed by system in time interval} \quad t \rightarrow t + \delta t \]

Putting it all together:
\[\langle I \rangle_t = \frac{1}{k_B} [S(t+\delta t) - S(t)] - \frac{1}{k_B T} \langle Q \rangle_t \]
\[\Rightarrow S(t+\delta t) - S(t) = \frac{\langle Q \rangle_t + \langle I \rangle_t \cdot k_B}{T} \]

Compare to traditional definition of entropy change:
\[dS = \frac{dQ}{T} \quad \text{for reversible process} \]
\[dS > \frac{dQ}{T} \quad \text{otherwise} \]

We see our formulation perfectly replicates the traditional definition, since:
\[\langle I \rangle_t = 0 \quad \text{for reversible process} \]
\[\langle I \rangle_t > 0 \quad \text{otherwise} \]

Hence \(\langle I \rangle_t > 0 \) is indeed equivalent to traditional second law.

In more modern usage, we divide both sides of entropy equation by \(\delta t \):

\[\frac{\dot{S}(t)}{\delta t} = \frac{\langle Q \rangle_t}{\delta t T} + \frac{\langle I \rangle_t k_B}{\delta t} \]

\[\equiv \dot{S}^r(t) \quad \equiv \dot{S}^i(t) \]

\(\dot{S}^r(t) \) can be positive or negative, or zero and does not change the entropy budget of the universe. [since entropy production due to heat flowing into system is balanced by entropy destruction in environment of heat flowing out of the environment]

\[\dot{S}^i(t) \propto \langle I \rangle_t \]

If \(\dot{S}^i(t) > 0 \) \(\Rightarrow \) entropy of universe increases.

Depending on size & sign of \(\dot{S}^r(t) \), the sum \(\dot{S}(t) = \dot{S}^r(t) + \dot{S}^i(t) \) can be positive or negative.
Recall first law + DB:

\[
\frac{\Omega_{mn}}{\Omega_{nm}} = e^{-\beta \left[E_m - E_n + P(V_m - V_n) + W_{mn} \right]} \quad \text{heat}
\]

Define \(H_m = E_m + PV_m \) enthalpy of state \(m \).

Because we are working in aqueous environment \((P \neq 0)\) we will always use \(H_m \) in place of \(E_m \).

\[
Q_{mn} = H_m - H_n + W_{mn} \quad [1st \ text \ law]
\]

Let us decompose \(\dot{S}^r(t) = \frac{\langle Q \rangle_t}{\delta t} \)

\[
\Rightarrow = \frac{1}{\delta t T} \sum_{m \neq n} P_{mn}(t) \left[H_m - H_n + W_{mn} \right]
\]

\[
= \frac{1}{\delta t T} \left[\sum_{m \neq n} P_m(t + \delta t) H_m - \sum_n P_n(t) H_n \right.
\]

\[
\left. + \sum_{m \neq n} P_{mn}(t) W_{mn} \right]
\]

\[
= \frac{1}{T} \left[\frac{\dot{H}(t + \delta t) - \dot{H}(t)}{\delta t} + \frac{\langle W \rangle_t}{\delta t} \right]
\]

\[
= \frac{1}{T} \left[\dot{H}(t) + \dot{W}(t) \right]
\]

mean rate of enthalpy change

mean rate of work done by system
Then
\[\dot{S}(t) = \frac{1}{T} \left(\dot{H}(t) + \dot{W}(t) \right) + \dot{S^i}(t) \]

This is the entropy change equation, which together with \(\dot{S^i}(t) \geq 0 \) represents a combo of 1st and 2nd laws.

We can rewrite this using the definition:
\[G(t) = \bar{H}(t) - TS(t) \equiv \text{Gibbs free energy} = \bar{E}(t) + PV(t) - TS(t) \]

\[\Rightarrow \dot{G}(t) = -\dot{W}(t) - TS^i(t) \]

Simplest case: no ext. potential to do additional work \(\Rightarrow \dot{W}(t) = 0 \)

Then \(\dot{G}(t) = -TS^i(t) \leq 0 \)

\(G(t) \) is always decreasing (or constant)!

Since \(G(t) = \bar{H}(t) - TS(t) \)

and we know \(\bar{H}(t) \) is bounded from below by min. enthalpy among all states in the system,

\[S(t) \leq S^{\text{max}} = k_B \ln N \]

\(\Rightarrow G(t) \) cannot decrease to \(-\infty\)!

Hence it must level off to a constant as \(t \to \infty \).

\[\begin{array}{c}
\text{Graph:} \\
G(t) \\
G(0) \quad G(\infty) = G^{eq} \\
0 \quad t
\end{array} \]
How can this happen?

\[\dot{G}(\infty) = -T \dot{S}^i(\infty) = 0 \]

hence \[\dot{S}^i(\infty) = \frac{k_b \langle I \rangle_t}{\delta t} = 0 \]

But \(\langle I \rangle_t = 0 \) if and only if \(I_{mn}(t) = 0 \) for all \(m, n \)

\[I_{mn}(t) = \ln \frac{P_{mn}(t)}{P_{nm}(t+\delta t)} \]

\[= \begin{cases} \ln \frac{\Omega_{mn} \delta t \cdot P_{n}(t)}{\Omega_{nm} \delta t \cdot P_{m}(t+\delta t)} & m \neq n \\ \ln \frac{(\Omega_{nn} \delta t + 1) \cdot P_{n}(t)}{(\Omega_{nn} \delta t + 1) \cdot P_{m}(t+\delta t)} & m = n \end{cases} \]

This is zero when \(P_{n}(t) = P_n^s \)

\(P_{m}(t+\delta t) = P_m^s \)

and \(\frac{\Omega_{mn} P_n^s}{\Omega_{nm} P_m^s} = 1 \)

But this is just the definition of the equilibrium stationary state with no currents:

\[J_{nm}^{eq} = \Omega_{mn} P_{n}^{eq} - \Omega_{nm} P_{m}^{eq} = 0 \]

Hence we see that:

\[G(t) \xrightarrow{t \to \infty} G^{eq} \] (minimum free energy)

implies

\[P_{n}(t) \xrightarrow{} P_{n}^{eq} \] (equilibrium stationary state)

\[\langle I \rangle_t \xrightarrow{} 0 \]
In the absence of a persistent source of ext. work \([\dot{W}(t) = 0]\) any system must eventually reach an equilibrium with no currents, corresponding to a minimum \(G\).
In the most general case (no assumptions about \(W(t) \)):

\[
\dot{G}(t) = -\dot{W}(t) - T \dot{S}^i(t) \geq 0
\]

\[\Rightarrow \dot{W}(t) \leq -\dot{G}(t)\]

System can do work on environment (\(\dot{W} > 0 \)) by depleting \(G(t) \) \([\dot{G}(t) \leq 0] \)

But then amount of work is always bounded by change in \(G \):

\[W(t + \delta t) - W(t) \leq G(t) - G(t + \delta t)\]

Hence "free energy" \(\Rightarrow \) energy available to do work

\[\text{[maximum conversion occurs only when } \dot{S}^i(t) = 0 \Rightarrow \text{equilibrium]}\]