
PHYS 320: Mastering the master equation
Part I: Writing it down
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The master equation allows us to describe
stochastic dynamics in a wide variety of bi-
ological models. The starting point for con-
structing this equation is always to identify the
relevant states of the system, and the transi-
tion rates between them. Consider the three
simple examples on the right, where the black
circles denote the states and the red arrows the
allowed transitions.

Let us start our discussion with system A,
which is the simplest stochastic model one can
construct. The red arrow labeledw means that
if the system is in state 1 at any time t, the
probability of jumping to state 2 between time
t and t + δt is wδt. Note the emphasis on the word if: the probability wδt is conditioned on the
assumption you are in state 1 at time t. But we are not necessarily in state 1 at time t. Imagine
we are running many experimental trials, all initiated in state 1 at t = 0, which corresponds to
having probability p1(0) = 1. If we watch our experiments until time t, some of them will remain
in state 1 (a fraction p1(t) of the total), while the remainder (a fraction p2(t) = 1 − p1(t)) will
now be in state 2.

Thus the probability of seeing a jump from 1 to 2 between times t and t + δt is actually
wp1(t)δt. This is because for the jump to happen, two conditions must be ful�lled: you have
to be in state 1 (probability p1(t)) and a jump must occur from 1 to 2 (probability wδt). The
probability of observing the jump is the product of these two probabilities. Multiplying by p1(t)
is important: for example if p1(t) = 0 (none of the experimental systems were in state 1 at time
t) then you would not see any jumps from 1 to 2 between t and t+ δt.

Transition rates: In general, let Ωii′δt be the probability that if the system is in state i′ at
time t, a jump to di�erent state i 6= i′ will occur in the time interval t to t+ δt. The probability of
actually seeing such a jump is Ωii′pi′(t)δt. If there areN states, the values Ωii′ are called transition
rates, and the Ω is the transition rate matrix. (We will de�ne the diagonal elements of this matrix
later.) Graphically, Ωii′ is a red arrow from i′ to i, and pi′(t) is the probability of the state where
the arrow originates.

Returning to system A, we can now write down dynamical equations for p1(t) and p2(t). The
fraction of experimental trials in state 1 at time t+ δt can be broken down as follows:

(fraction of trials in state 1 at time t+ δt) = (fraction of trials in state 1 at time t)
− (fraction of trials where a jump 1 to 2

was observed between t and t+ δt)

In probability terms, this translates to:

p1(t+ δt) = p1(t)− wp1(t)δt
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Since each observed jump 1 → 2 adds to the fraction in state 2, we have the following equation
for state 2:

p2(t+ δt) = p2(t) + wp1(t)δt

Dividing through by δt and taking the limit δt→ 0, we can rewrite these equations as:

1 2

dp1
dt

= −wp1,

dp2
dt

= wp1

(1)

For any system, the right-hand side of the master equation for state i is always the sum of contri-
butions from each arrow going into or out of state i, giving positive or negative terms respectively.
For example, convince yourself that the following equations describe System B, which has three
states:

1 2 3

dp1
dt

= −wp1 + vp2 + sp3,

dp2
dt

= wp1 − (u+ v)p2,

dp3
dt

= up2 − sp3

(2)

Finally, here are the equations for system C, which is a three-state version of our di�usion model
along one coordinate,

1 2 3

dp1
dt

= −wp1 + wp2,

dp2
dt

= wp1 − 2wp2 + wp3,

dp3
dt

= wp2 − wp3

(3)

General master equation: The right-hand side of the equation for dpi/dt for a given state
i is a sum of two types of contributions: a) arrows going into i from i′ 6= i, each giving a positive
factor of Ωii′pi′ ; b) arrows going out of i to some i′ 6= i, each giving a factor of −Ωi′ipi. The net
result is an equation:

dpi
dt

=
∑
i′ 6=i

Ωii′pi′ −
∑
i′ 6=i

Ωi′ipi (4)
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To write this as a matrix-vector product on the right-hand side, we de�ne the diagonal elements
of the matrix Ω as:

Ωii ≡ −
∑
i′ 6=i

Ωi′i

Note that this is the same as saying that each column of Ω always adds up to zero. As we saw
in class, this guarantees that the probability pi(t) which is a solution to the master equation is
always normalized. Physically, the absolute value |Ωii| is the total transition rate for leaving state
i, summing all possible jumps to other states i′ 6= i.

With the above de�nition of Ωii, Eq. (4) becomes:

dpi
dt

=
∑
i′ 6=i

Ωii′pi′ + Ωiipi

=
∑
i′

Ωii′pi′

⇒ dp

dt
= Ωp,

(5)

where p(t) is the vector with components pi(t). The matrix-vector forms of the three master
equations above, Eqs. (1)-(3), are:

1 2 d

dt

(
p1
p2

)
=

(
−w 0
w 0

)(
p1
p2

)

1 2 3

d

dt

p1p2
p3

 =

−w v s
w −(u+ v) 0
0 u −s

p1p2
p3


1 2 3

d

dt

p1p2
p3

 =

−w w 0
w −2w w
0 w −w

p1p2
p3



(6)
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