Shake, rattle, and roll...

Movie on course website: diff_fast2.mp4
Particle tracks
Particle tracks
Particle tracks
Caging Dynamics in a Granular Fluid

P. M. Reis, * R. A. Ingale, and M. D. Shattuck†

Benjamin Levich Institute, The City College of the City University of New York,
140th Street and Convent Avenue, New York, New York 10031, USA
(Received 17 October 2006; published 30 April 2007)

We report an experimental investigation of the caging motion in a uniformly heated granular fluid for a wide range of filling fractions, ϕ. At low ϕ the classic diffusive behavior of a fluid is observed. However, as ϕ is increased, temporary cages develop and particles become increasingly trapped by their neighbors. We statistically analyze particle trajectories and observe a number of robust features typically associated with dense molecular liquids and colloids. Even though our monodisperse and quasi-2D system is known to not exhibit a glass transition, we still observe many of the precursors usually associated with glassy dynamics. We speculate that this is due to a process of structural arrest provided, in our case, by the presence of crystallization.

DOI: 10.1103/PhysRevLett.98.188301

PACS numbers: 47.57.Gc, 05.70.Ln, 61.20.Lc, 64.70.Dv
Caging dynamics