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INVESTIGATIONS ON THE THEORY 
OF THE BROWNIAN MOVEMENT 

I 

ON THE MOVEMENT OF SMALL PARTICLES 
SUSPENDED IN A STATIONARY LIQUID 

KINETIC THEORY OF HEAT 
DEMANDED BY THE MOLECULAR- 

I N this paper it will be shown that according 
to the molecular-kinetic theory of heat, bodies 

of microscopically-visible size suspended in a 
liquid will perform movements of such magnitude 
that they can be easily observed in a microscope, 
on account of the molecular motions of heat. 
It is possible that the movements to be discussed 
here are identical with the so-called ‘‘ Brownian 
molecular motion ” ; however, the information 
available to me regarding the latter is so lacking 
in precision, that I can form no judgment in the 
matter (I). 

If the movement discussed here can actually 
be observed (together with the laws relating to 
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it that one would expect to find), then classical 
thermodynamics can no longer be looked upon 
as applicable with precision to bodies even of 
dimensions distinguishable in a microscope : an 
exact determination of actual atomic dimensions 
is #en possible. On the other hand, had the 
prediction of this movement proved to be in- 
correct, a weighty argument would be provided 
against the molecular-kinetic conception of heat. 

3 I. ON THE OSMOTIC PRESSURE TO BE ASCRIBED 

TO THE SUSPENDED PARTICLES 

Let z gràm-molecules of a non-electrolyte be 
dissolved in a volume V* forming part of a 
quantity of liquid of total volume V. If the 
volume V* is separated from the pure solvent 
by a partition permeable for the solvent but 
impermeable for the solute, a so-called “ osmotic 
pressure,’’ 9, is exerted on this partition, which 
satisfies the equation 

$V*= RTz . (4  
when V*/z is sufficiently great. 

On the.other hand, if small suspended particles 
are present in the fractional volume V* in place 
of the dissolved substance, which particles are also 
unable to pass through the partition permeable to 
the solvent : according to the classical theory of 
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thermodynamics-at least when the foreë of gravity 
(which does not interest us here) is ignored-we 
would not expect to find any force acting on the 
partition ; for according to ordinary conceptions 
the “ free energy ” of the system appears to be 
independent of the position of the partition and 
of the suspended particles, but dependent only 
on the total mass and qualities of the suspended 
material, the liquid and the partition, and on the 
pressure and temperature. Actually, for the cal- 
culation of the free energy the energy and entropy 
of the boundary-surface (surface-tension forces) 
should also be considered ; these can be excluded 
if the size and condition of the surfaces of contact 
do not alter with the changes in position of the 
partition and of the suspended particles under 
consideration. 

But a different conception is reached from 
the standpoint of the molecular-kinetic theory of 
heat. According to this theory a dissolved mole- 
cule is differentiated from a suspended body 
soZeZy by its dirhensions, and it is not apparent 
why a number of suspended particles should not 
produce the same osmotic pressure as the same 
number of molecules. We must assume that the 
suspended particles perform an irregular move- 
ment-even if a very slow one-in the liquid, on 
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account of the molecular movement of the liquid ; 
if they are prevented from leaving the volume V* 
by the partition, they will exert a pressure on the 
partition just like molecules in solution. Then, 
if there are f i  suspended particles present in the 
volume V*, and therefore %/'V* = V in a unit .of 
volurne, and if neighbouring particles are suffi- 
ciently far separated, there will be a corresponding 
osmotic pressure fi of magnitude given by 

R T n  RT 

where N signifies the actual number of molecules 
contained in a gram-molecule. It will be shown 
in the next paragraph that the molecular-kinetic 
theory of heat actually leads to this wider con- 
ception of osmotic pressure. 

p z - -  
V * N " Ñ ' v '  

fj-2, OSMOTIC PRESSURE FROM THE STANDPOINT 
OF THE MOLECULAR-KINETIC THEORY OF 
HEAT (*) 

If p l ,  P,, . . . @ J  are the variables of state of 

(*) In this paragraph the papers of the author on the 
'' Foundations of Thermodynamics " are assumed to be 
familiar to the reader (Ann. d. Phys., 9, p. 4r7, 1902 ; 
11, p. 170, 1903). An understanding of the conclusions 
reached in the present paper is not dependent on a 
knowledge of the former papers or of this paragraph of 
the present paper. 
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a. physical system which completely define the 
instantaneous condition of the system (for ex- 
ample, the Co-ordinates and velocity components 
of all atoms of the system), and if the complete 
system of the equations of change of these variables 
of state is given in the form 

?& 3t = +.(pl . pl)  (V = I, 2,  * . . Z) 

whence 

then the entropy of the system is given by the 
expression 

where T is the absolute temperature, E the energy 
of the system, E the energy as a function of f i v .  

The integral is extended over all possible values I 

of 9. consistent with the conditions of the prob- 
lem. x is connected with the constant N referred 
to before by the relation zxN = R. We obtain 
hence for the free energy F, 
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Now let us consider a quantity of liquid enclosed 
in a volume V ; let there be n solute molecules 
(or suspended particles respectively) in the por- 
tion 'V* of this volume ' V #  which are retained in 
the volurne V* by a semi-permeable partition ; 
the integration limits of the integral B obtained 
in the expressions for S and F will be affected 
accordingly. The combined. volume of the solute 
molecules (or suspended particles) is taken as 
small compared with V*. This system will be 
completely defined according to the theory under 
discussion by the variables of condition pl . . . pl.  

If the molecular picture were extended to deal 
with every single unit, the calculation of the 
integral B would offer such difficulties that an 
exact- calculation of F could be SCarceIy contem- 
plated. Accordingly, we need here only to know 
how F depends on the magnitude of the volume 
V*, in which all the solute molecules, or suspended 
bodies (hereinafter termed briefly " particles 
are contained. 

We will call x,, yI, x, the rectangular Co-ordinates 
of the centre of gravity of the first particle, 
x,, y,, x ,  those of -the second, etc., x,, y,, x, those 
of the last particle, and allocate for the centres 
of gravity of the particles the indefinitely small 
domains of parallelopiped form dg,, dy,, dzl ; dxzt 
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dy2, dz,, . . . dx,, dy,, dzn, lying wholly within 
V*, The value of the integral appearing in the 
expression for F will be sought, with the limita- 
tion tilat the centres of gravity of the particles 
lie within a domain defined in this manner. The 
integral can then be brought into the form 

dB dX1 dyl dZn . J ,  

where J is independent of axl, dy,, etc., as well as 
of V*, i.e. of the position of the semi-permeable 
partition. But J is also independent of  any 
special choice of the position of the domains of 
the centres of gravity and of the magnitude of 
V*, as will be shown immediately. For if a 
second system were given, of indefinitely small 
domains of the centres of gravity of the particles, 
and the latter designated dx:dyl'dzl' ; dx;dy,'dz[ 
. . . dx,'dyn'dzn', which domains differ from those 
originally given in their position but not in their 
magnitude, and are similarly all contained in V*, 
an analogous expression holds :- 

dB' = dxl'dy; . . . dz,,' , J'. 
Whence 

dXIdy1 dzn = dxl'dyl' . . . dza'. 
Therefore 

dB J 
dB' - TfT -- - 
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But from the molecular theory of Heat given in the 
paper quoted, (*) it is easily deduced that d B  /B (4) 
(or dB'/B respectively) is equal to the probability 
that at any arbitrary moment of time the centres 
of gravity of the particles are included in the 
domains (dx, . . . dz,) or (2%: . . . dzn') respec- 
tively. Now, if the movements of single particles 
are independent of one another to a sufficient 
degree of approximation, if the liquid is homo- 
geneous and exerts no force on the particles, then 
for equal size of domains the probability of each 
of the two systems will be equal, so that the follow- 
ing holds : 

dB dB' 
B B '  

But from this and the last equation obtained it 
follows that 

J = J'. 
We have thus proved that J is independent both 
of V* and of x,, yr, . . . x,. By integration we 
obtain 

-x- 

B = / ] d x l .  . . dzn = J .  V*n, 
and thence 

(*) A. Einstein, Ann. d .  Phys., 11, p. 170, 1903. 
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and 
3F RT RT p = - a l r * = Y * l C i = N v *  

It has been shown by this analysis that the exist- 
ence of an osmotic pressure can be deduced from 
the molecular-kinetic theory of Heat ; and that 
as far as osmotic pressure is concerned, solute 
molecules and suspended particles are, according 
to this theory, identical in their behaviour at  
great dilution. 

6 3. THEORY OF THE DIFFUSION OF SMALL 
SPHERES IN SUSPENSION 

Suppose there be suspended particles irregularly 
dispersed in a liquid. We will consider their 
state of dynamic equilibrium, on the assumption 
that a force K acts on the single particles, which 
force depends on the position, but not on the time. 
It will be assumed for the sake of simplicity that 
the force is exerted everywhere in the direction of 
the x axis. 

Let Y be the number of suspended particles per 
unit volume ; then in the condition of dynamic 
equilibrium V is such a function of x that the varia- 
tion of the free energy vanishes for an arbitrary 
virtual displacement Sx of the suspended sub- 
stance. We have, therefore, 

8F = 8.E - TSS O. 
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It will be assumed that the liquid has unit area 
of cross-section perpendicular .to the x axis and 
is bounded by the planes x = o 
have, then, 

6E = - {:Kv6xdx 

and 

and x = 1. We 

The required condition of equilibrium is there- 
fore 

or 

RT av - K V +  --- N ax-O 

The last equation states that equilibrium with the 
force K is brought about by osmotic pressure 
forces. 

Equation (I) can be used to find the coefficient 
of diffusion of the suspended substance. We can 
look upon the dynamic equilibrium condition con- 
sidered here as a superposition of two processes 
proceeding in opposite directions, namely i- 

I. A movelment of the suspended substance 
under the influence of the force K acting on each 
single suspended particle. 
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2. A process of diffusion, which is to be looked 
upon as a result of the irregular movement of the 
particles produced by the thermal molecular 
movement. 

If the suspended particles have spherical form 
(radius of the sphere = P), and if the liquid has 
a coefficient of viscosity k ,  then the force K im- 
parts to the single particles a velocity (*) 

and there will pass a unit area per unit of time 

vK 
67rkP 

particles. 
If, further, D signifìes the coefficient of diffusion 

of the suspended substance, and p the mass of a 
particle, as the result of diffusion there will pass 
across unit area in a unit of time, 

- D'M grams 
bX 

or 
3 V  

3X 
- D- particles. 

(*) Cf. e.g. G. Kirchhoff, " Lectures on Mechanics," 
Lect. 26z 8 4. 
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Since there must be dynamic equilibrium, we 
must have 

VK 31, 
=P- 3x 

D- = O. 

We can calculate the coefficient of diffusion 
from the two conditions (I) and (2) found for the 
dynamic equilibrium. We get 

RT I D=------ 
N 61rkP * 

The coefficient of diffusion of the suspended sub- 
stance therefore depends (except for universal 
constants and thk absolute temperature) only on 
the coefficient of viscosity of the liquid and on the 
size of the suspended particles. 

fj 4. ON THE IRREGULAR MOVEMENT OF PARTICLES 

SUSPENDED IN A LIQUID AND THE RELATION 

OF THIS TO DIFFUSION 

We will turn now to a closer consideration of 
the irregular movements which arise from thermal 
molecular movement, and give rise to the diffusion 
investigated in the last paragraph. 

Evidently it must be assumed that each single 
particle executes a movement which is indepen- 
dent of the movement of all other particles ; the 
movements of one and the same particle after 
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different intervals of time must be considered as 
mutually independent processes, so long as we 
think of these intervals of time as being chosen 
not too small. 

We will introduce a time-interval T in our dis- 
cussion, which is to be very small compared with 
the observed interval of time, but, nevertheless, 
of such a magnitude that the movements executed 
by a particle in two consecutive intervals of time 
r are to be considered as mutually independent 
phenomena (8). 

Suppose there are altogether n suspended par- 
ticles in a liquid. In an interval of time r the 
x-Co-ordinates of the single particles will increase 
by d, where d has a different value (positive or 
negative) for each particle. For the value of d 
a certain probability-law will hold ; the' number 
d% of the particles which experience in the time- 
interval r a displacement which lies between d 
and d + dA, will be expressed by an equation of 
the form 

where 
dn = n+(A)d& 

[+OO+(A)dd -00 = I 

and + only differs from zero for very small values 
of d and fulfils the condition 
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We will investigate now how the coefficient of 
diffusion depends on 4, confining ourselves again 
to the case when the number V of the particles per 
unit volume is dependent only on x and t. 

Putting for the number of particles per unit 
volume V = f(x, t) ,  we will calculate the distri- 
bution of the particles at a time t + T from the 
distribution at the time t. From the definition 
of the function +(A) ,  there is easily obtained the 
number of the particles which are located at the. 
time t + T between two planes perpendicular to 
the x-axis, with abscissz! x and x + ax. We get 

f(x, t + 7)dx = dx. J f ( x  + A)#(A)dA. 
A = = +  m 

A =  - m 

Now, since T is very small, we can put 

Further, we can expand j ( x  + d, t )  in powers 
of A :- 

We can bring this expansion under the integral 
sign, since only very small values of A contribute 
anything to the latter. We obtain 

f - / - - ~ o  r=fj Q(d)dA+jfS d+(A)dA 
+ m  ax + W  

- m  -00 
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On the right-hand side the second, fourth, etc., 
terms vanish since +(x) = #(- x) ; whilst of the 
first, third, fifth, etc., terms, every succeeding 
telm is very small compared with the preceding. 
Bearing in mind that 

and putting 
+ m  

and taking into consideration only the first and 
third terns on the right-hand side, we get from 
this equation 

This is the well-known differential equation for 
diffusion, and we recomise that D is the coeecient 
of diffusion. 

Another important consideration can be related 
to this method of development. We have assumed 
that the single particles are all referred to the 
same Co-ordinate system. But this is unneces- 
sary, since the movements of the single particles 
are mutually independent. We wilI now refer 
the motion of each particle to a Co-ordinate 
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system whose origin coincides at the time t = o 
with the position of the centre of gravity of the 
particles in question ; with this difference, that 
f(x, t)dx now gives the number of the particles 
whose x Co-ordinate has increased between the 
time t = o and the time t = t, by a quantity 
which lies between x and x + dx. In this case 
also the function f must satisfy, in its changes, 
the equation (I). Further, we 

have €or x > o and t = o, < 
f ( x ,  t )  = o and [ + w j ( x ,  

--m 

must evidently 

t)dx = n. 

The problem, which accords with the problem of 
the diffusion outwards from a point (ignoring pos- 
sibilities of exchange between the diffusing par- 
ticles) is now mathematically completely defined 
(9) ; the solution is 

xcr -- 

The probable distribution of the resulting dis- 
placements in a given time t is therefore the same 
as that of fortuitous error, which was to be ex- 
pected. But it is significant how the constants in 
the exponential term are related to the coefficient 
of diffusion. We wil€ now calculate with the help 
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of this equation the displacement Xz in the direc- 
tion of the X-axis which a particle experiences on 
an average, or-more accurately expressed-the 
square root of the arithmetic mean of the squares 
of displacements in the direction of the X-axis ; 
it is 

Aa = 45 = J Z t  . ' (11) 

. The mean displacement is therefore propor- 
tional to the square root of the time. It can 
easily be shown that the square root of the mean 
of the squares of the total displacements of the 
particles has the value &J3 . . (12) 

5 5. FORMULA FOR THE MEAN DISPLACEMENT OF 

SUSPENDED PARTICLES. A NEW METHOD OF 

DETERMINING THE REAL SIZE OF THE ATOM 
In 5 3 we found for the coefficient of diffusion D 

of a material suspended in a liquid in the form of 
small spheres of radius P- 

Further, we found in 5 4 for the mean value of the 
displacement of the particles in the direction of 
the X-axis in time t- 

Aa = Jak 
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By eliminating D we obtain 

This equation shows how )C, depends on T,  k ,  and P. 
We will calculate how great & is for one second, 

if N is taken equal to 6.10~3 in accordance with the 
kinetic theory of gases, water at 17" C. is chosen 
as the liquid (K = 1-35  IO-^), and the diameter of 
the particles -001 mm. We get 

&, = 8*10-~ cm. = 0.8,~. 

The mean displacement in one minute would be, 
therefore, about 6p. 

On the other hand, the relation found can be 
used for the determination of N .  We obtain 

I RT 
ha2 3wkP' 

N = - * -  

It is to be hoped that some enquirer may succeed 
shortly in solving the problem suggested here, 
which is so important in cqnnection with the 
theory of Heat. (13) 

Berne, May, 1905. 
(Received, II May, 1905.) 

II 

ON THE THEORY OF THE BROWNIAN 
MOVEMENT 

S OON after the appearance of my paper (*) 
on the movements of particles suspended 

in liquids demanded by the molecular theory of 
heat, Siedentopf (of Jena) informed me that he 
and other physicists-in the first instance, Prof. 
Gouy (of Lyons)-had been convinced by direct 
observation that the so-called Brownian motion 
is caused by the irregular thermal movements of 
the molecules of the liquid. (t) 

Not only the qualitative properties of the 
Brownian motion, but also the order of magnitude 
of the paths described by the particles correspond 
completely with the results of the theory. I will 
not attempt here a comparison of the slender 
experimental material at my disposal with the 

(*) A. Einstein, Ann. d.  Phys., 17, p. 549, 1905. 
(t) M. Gouy, Jouyn. de Phys. (z) ,  I, 561, 1888. 

19 


