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ABSTRACT Levinthal’s paradox is that finding the native
folded state of a protein by a random search among all possible
configurations can take an enormously long time. Yet proteins
can fold in seconds or less. Mathematical analysis of a simple
model shows that a small and physically reasonable energy bias
against locally unfavorable configurations, of the order of a few
kT, can reduce Levinthal’s time to a biologically significant
size.

Lectures and articles dealing with protein folding dynamics
often begin with a reference to the Levinthal ‘‘paradox’ (1,
21). The main point of this paper is to show by mathematical
analysis of a simple model that Levinthal’s paradox becomes
irrelevant to protein folding when some of the interactions
between amino acids are taken into account.

How long does it take for a protein to fold up into its native
structure? In a standard illustration of the Levinthal paradox,
each bond connecting amino acids can have several (e.g.,
three) possible states, so that a protein of, say, 101 amino
acids could exist in 31® = § x 10* configurations. Even if the
protein is able to sample new configurations at the rate of 10!
per second, or 3 X 10% per year, it will take 107 years to try
them all. Levinthal concluded that random searches are not
an effective way of finding the correct state of a folded
protein. Nevertheless, proteins do fold, and in a time scale of
seconds or less. This is the paradox.

A clue to the resolution of the paradox is suggested by
Dawkins (3) in a discussion of evolution by the accumulation
of small changes. He gave a more whimsical example of a
similar paradox: how long will a random search take to
produce Hamlet’s remark ‘‘Methinks it is like a weasel’’?
This statement contains 28 characters, including 5 spaces;
and there are 27 possible choices for each location, 26 letters
and a space. A monkey typing randomly would probably
require about 2728 = 10*° key strokes. Dawkins observed that
if the monkey cannot change those letters that are already
correctly in place, Hamlet’s remark may be reached by a
random search in only a few thousand key strokes.

In both examples, folding proteins or writing Hamlet,
biased searches are much more effective than completely
random searches. Of course this is well known; in protein
folding simulations, potential energy functions provide the
necessary bias for Monte Carlo methods (4) and for molecular
dynamics methods (5). However, these methods rely heavily
on computation and are not amenable to easy mathematical
analysis. The goal of this paper is to provide the mathematical
analysis of Levinthal’s paradox for a highly simplified model
of protein folding.

A first-passage time calculation shows that for an unbiased
random search, Levinthal’s protein folding estimate is es-
sentially correct. But if a modest amount of bias is intro-
duced, for example by imposing an energy cost of a few kT
for locally incorrect bond configurations, the first-passage
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time to the fully correct state can be very much shorter. In
fact, this time can become biologically significant.

Model and Results

Since the goal is not to understand the folding of any
particular protein, but only to present an elementary resolu-
tion of Levinthal’s paradox, precise details of the protein
structure will be ignored. Consequently, the model to be
treated is not expected to be directly useful in the theory of
protein folding. It allows for only one of the many kinds of
energetic effects that are known to be involved in folding a
real protein.

The protein is a chain of N + 1 amino acids and N bonds.
The connecting bond between two neighboring amino acids
can be characterized as ‘‘correct’ or ‘‘incorrect.”’ (Correct
means native in biology and ‘‘Shakespearean’’ in writing
Hamlet.) There may be several ways that this bond can be
incorrect; these will all be lumped together. Correct bonds
are labeled c, and incorrect bonds are labeled i. A typical
configuration of the chain is cciiciccciic. The ‘‘perfect” or
fully correct state is the one consisting of all ¢’s and no i’s.
The problem treated here is: starting with an arbitrary
distribution of correct and incorrect bonds, and some rule for
making changes, find how long it takes to get to the perfect
chain for the first time.

The rule for making changes is the main issue. These
changes cannot be entirely random; they must be governed
by physical chemical laws. The simplest nontrivial assump-
tion one can make is that a correct bond can become incorrect
(c — i) with the rate ky and an incorrect bond can become
correct (i — c¢) with the rate k; and that these changes occur
entirely independently. As a result, the number S of incorrect
bonds in the protein configuration changes in time. The
first-passage time to the perfect state is the elapsed time,
starting from some arbitrary initial S, to arrive for the first
time at S = 0. The mean first-passage time 7(S) is the average
of this elapsed time over all ways of getting from S to S = 0.

Then the mean first-passage time from a configuration with
S incorrect bonds to the perfect configuration is approxi-
mately

7(S) = (1/Nko)(1 + ko/kp) ™. (11

(The exact result is given later in Eq. 16.) This is asymptot-
ically correct for large N if kg is not too small. The time 7 is
essentially independent of the starting S; even if the starting
configuration is close to perfect, there is a significant prob-
ability that it will wander further away before reaching S =
0. The mean first-passage time for a fully biased search,
where the change ¢ — i is not allowed so that ky = 0, is
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s 1
7(8) = (1/k) 2, - 2]
j=1]

In this limit, 7 is independent of N and has a logarithmic
dependence on S. This is the formula to use in connection
with Dawkins’ ‘‘weasel.”’ It gives a value for 7 of the order
of 105 generations (one generation is 28 attempts), which is
what one sees in a computer simulation of a fully biased
random search. The derivation of these formulae will be
given later.

Up to this point, the protein was characterized only by N
and the two rate constants. However, it is useful to make a
specific interpretation of the ratio ko/k;. The Kinetic scheme
for a single bond is

d
o [c]= —kolc] + ki[i],  [c]+[i]=1. [31

The ratio of the rate constants is an equilibrium constant,
[i]cq/ [c]eq =ko/ky = K. 4]

Then [c]eq = 1/(1 + K) and [ileq = K/(1 + K). Although the
separate rate constants may involve collision frequencies,
Brownian motion over potential barriers, or other dynamical
effects, K does not. It is strictly thermodynamic. The rate &,
or k; only sets the overall time scale for 7(S).

The equilibrium constant can be found from statistical
mechanics. Suppose that there are v + 1 possible kinds of
bond. The correct bond has degeneracy 1 and energy ¢, and
the incorrect bonds have degeneracy v and energy ¢; = ¢, +
U. Thus U is an energy penalty for making an incorrect bond.
Then by working out the equilibrium statistical thermody-
namics, one finds

K = ko/ky = ve  U/KT, (51
Discussion

When U = 0, or there is no penalty, the mean first-passage
time becomes

L= (1/Nko)(v + DV, (6]

where (v + 1)V is the number of possible configurations and
Nk, is the sampling rate. This is the formula that is usually
used in discussions of Levinthal’s paradox.

But if there is a penalty, so that ky/k; is small, 7 can become
much smaller. This is shown dramatically in Fig. 1. The graph
was drawn using the exact formula for 7(S) given in Eq. 16;
the approximate formula in Eq. 1 gives slightly smaller values
for r when U/kT is big. This graph is based on N = 100, v =
2, and S = 66. The rate constants were arbitrarily chosen as
ky = 10° s~ fori— c and ko = 2 exp(—U/kT) x 10° s~ ! for
¢ — i. This choice satisfies Eq. 5. As in Metropolis Monte
Carlo simulations, k; is taken to be independent of temper-
ature, so that the entire temperature dependence comes from
the energy penalty in making an incorrect bond. The figure
shows the mean first-passage time, in years, as a function of
U/kT. According to Eq. 2, the first-passage time in the limit
of infinite U/kT is about 1.5 x 1071 year or 5 x 1077 s.

The figure shows that the first-passage time becomes
biologically significant (of the order of 1 second) when U/kT
is greater than about 2. One may argue that the chosen value
of k; is only an uninformed guess, but one must remember
that the graph covers a range of more than 40 orders of
magnitude. If k; is changed by a few orders of magnitude, the
vertical axis is shifted by that amount. Then the energy at
which the resulting first-passage time is 1 second shifts to a
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FiG. 1. Mean first-passage time, in years, as a function of the
energy bias U/kT.

bit more or a bit less than 2kT. Evidently, reasonable changes
in k; do not affect the qualitative conclusion. Levinthal’s time
is greatly reduced by a very modest and physically reason-
able modification in the way that the dynamics is handled.

Mathematical Derivation

Now the derivation of the above results is outlined. The
method, based on the theory of first-passage times, has
already been applied by Bryngelson and Wolynes (6) in a
much more ambitious treatment of protein folding. Ref. 7
gives a useful review of the theory of first-passage times in the
context of chemical kinetics. Here, emphasis is put on the
mathematical formulation of the problem and not on details
of its solution.

The number of incorrect bonds is S; the number of correct
bonds is N — §. The rate at which § — S + 1 is the number
of correct bonds times the rate kg of changing a correct bond
into an incorrect one,

rate(S— S + 1) = (N — S)ko. 71

Similarly, the rate at which § — § — 1 is the number of
incorrect bonds times the rate k; of changing an incorrect
bond into a correct one,

rate(S— S — 1) = Skj. (8]

The probability that there are S incorrect bonds at time ¢ is
denoted by P(S,#). This changes by gains from § — 1 and §
+ 1l and lossesto S — 1 and S + 1. The gain-loss or master
equation is

dP(S )
-—_ ,t=
dt

(N—S+1koP(S -1, 1) + (S + Dk, P(S + 1, 1)
— (N = 8)kgP(S, t) — Sk1P(S, t). 9]

The end points § = 0 and § = N are handled by requiring that
P(—1, t) and P(N + 1, t) are both equal to 0.

The standard procedure for using a master equation to find
mean first-passage times is as follows. Write the differential
equations for P in matrix form as
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dPS = W(S, S)P(S’
dt (9t)_s' W(a )P( ’t)- [10]

Impose an absorbing boundary condition at § = 0, so that
only the states S = 1 to N are involved. Then the fundamental
equation that determines the mean first passage times is

; T(S)W(So, §) = -1, all §, (1]

or, more explicitly,

Ski[7(S — 1) — 7(S)] + (N — S)ko[r(S + 1) = 7(S)] = -1,
[12]

for all S between 1 and N. It is obvious that 7(0) must vanish

and 7(N + 1) is never needed. This determines all the other

7(S).

It is not hard to solve these equations. The procedure is
analogous to what one does in finding mean first-passage
times from the Smoluchowski equation. One first solves for
the differences AU(S) = 7(S + 1) — 7(S), with AU©) = (1)

and K AU(N — 1) = 1, and then sums the AU(S) to get 7(S).
The solution, easily verified by substitution, is

1 $-1 N-1 -1 N N m—n
78)= Fk; n=0 ( n > m=2n+l (m) K. 3]
In particular,
1)= L 1+K)VN-1 14
(1) = N [( ) 1 (14]

ko
By using the integral identity

N
N
Km—n
m=2n+1 (m)

= K(n+1) (n]: 1) f ' dx(1 — )" + Kx)N""1 [15]
0
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and then changing to the new variable y = (1 — x)/(1 + Kx),
the double sum defining 7(S) may be reduced to a single
integral,

s

7(S) = (1/ky)1 + K)NK f ' dy A+ Ky)™M1 6]

0

For large N, the integral is dominated by the contribution
from small y. Itis very weakly dependent on S. Its asymptotic
form for large N is given by

7(S)—
(1/Nkg)1 + K)M1 + 1WNK) L+ 2ANK) 2+ .. ). 17

The S-dependent parts of 7 are generally negligible in com-
parison with the leading term (1 + K)V. This is the result
stated in Eq. 1.

This asymptotic approximation is not valid if ko is too
small. In the limit k; — 0, the integral in Eq. 16 can be
evaluated easily and leads to Eq. 2.
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