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Abstract

Ever since Werner Heisenberg’s 1927 paper on uncertainty, there has
been considerable hesitancy in simultaneously considering positions and
momenta in quantum contexts, since these are incompatible observables.
But this persistent discomfort with addressing positions and momenta
jointly in the quantum world is not really warranted, as was first fully
appreciated by Hilbrand Groenewold and José Moyal in the 1940s. While
the formalism for quantum mechanics in phase space was wholly cast at
that time, it was not completely understood nor widely known — much
less generally accepted — until the late 20th century.

When Feynman first unlocked the secrets of the path integral formalism and
presented them to the world, he was publicly rebuked [8]: “It was obvious, Bohr
said, that such trajectories violated the uncertainty principle.”

However, in this case,1 Bohr was wrong. Today path integrals are uni-
versally recognized and widely used as an alternative framework to describe
quantum behavior, equivalent to although conceptually distinct from the usual
Hilbert space framework, and therefore completely in accord with Heisenberg’s
uncertainty principle. The different points of view offered by the Hilbert space
and path integral frameworks combine to provide greater insight and depth of
understanding.

Similarly, many physicists hold the conviction that classical-valued position
R Feynman

N Bohr

and momentum variables should not be simultaneously employed in any mean-
ingful formula expressing quantum behavior, simply because this would also
seem to violate the uncertainty principle (see Dirac).

However, they too are wrong. Quantum mechanics (QM) can be consis-
tently and autonomously formulated in phase space, with c-number position
and momentum variables simultaneously placed on an equal footing, in a way
that fully respects Heisenberg’s principle. This other quantum framework is
equivalent to both the Hilbert space approach and the path integral formula-
tion. Quantum mechanics in phase space (QMPS) thereby gives a third point
of view which provides still more insight and understanding.

What follows is the somewhat erratic story of this third formulation.

1Unlike the more famous cases where Bohr criticised thought experiments proposed by
Einstein, at the 1927 and 1930 Solvay Conferences.
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The foundations of this remarkable picture of quantum mechanics were laid
out by H Weyl and E Wigner around 1930. But the full, self-standing theory

H Weyl

W Heisenberg and E Wigner

was put together in a crowning achievement by two unknowns, at the very
beginning of their physics careers, independently of each other, during World
War II: H Groenewold in Holland and J Moyal in England (see Groenewold and
Moyal). It was only published after the end of the war, under not inconsiderable
adversity, in the face of opposition by established physicists; and it took quite
some time for this uncommon achievement to be appreciated and utilized by
the community.2

The net result is that quantum mechanics works smoothly and consistently
in phase space, where position coordinates and momenta blend together closely
and symmetrically. Thus, sharing a common arena and language with classical
mechanics [14], QMPS connects to its classical limit more naturally and intu-
itively than in the other two familiar alternate pictures, namely, the standard
formulation through operators in Hilbert space, or the path integral formulation.

Still, as every physics undergraduate learns early on, classical phase space is
built out of “c-number” position coordinates and momenta, x and p, ordinary
commuting variables characterizing physical particles; whereas such observables
are usually represented in quantum theory by operators that do not commute.
How then can the two be reconciled? The ingenious technical solution to this
problem was provided by Groenewold in 1946, and consists of a special binary
operation, the ⋆-product (see Star Product), which enables x and p to maintain
their conventional classical interpretation, but which also permits x and p to
combine more subtly than conventional classical variables; in fact to combine
in a way that is equivalent to the familiar operator algebra of Hilbert space
quantum theory.

Nonetheless, expectation values of quantities measured in the lab (observ-
ables) are computed in this picture of quantum mechanics by simply taking
integrals of conventional functions of x and p with a quasi-probability density
in phase space, the Wigner function — essentially the density matrix in this
picture. But, unlike a Liouville probability density of classical statistical me-
chanics, this density can take provocative negative values and, indeed, these can
be reconstructed from lab measurements [11].

How does one interpret these “negative probabilities” in phase space? The
answer is that, like a magical invisible mantle, the uncertainty principle man-
ifests itself in this picture in unexpected but quite powerful ways, and pre-
vents the formulation of unphysical questions, let alone paradoxical answers
(see Uncertainty Principle).

Remarkably, the phase-space formulation was reached from rather differ-
ent, indeed, apparently unrelated, directions. To the extent this story has a
beginning, this may well have been H Weyl’s remarkably rich 1927 paper [18]
(reprinted in [20]) shortly after the triumphant formulation of conventional QM.
This paper introduced the correspondence of phase-space functions to “Weyl-
ordered” operators in Hilbert space. It relied on a systematic, completely
symmetrized ordering scheme of noncommuting operators X and P .

Eventually it would become apparent that this was a mere change of repre-
sentation. But as expressed in his paper at the time [18], Weyl believed that
this map, which now bears his name, is “the” quantization prescription — su-
perior to other prescriptions — the elusive bridge extending classical mechanics
to the operators of the broader quantum theory containing it; effectively, then,
some extraordinary “right way” to a “correct” quantum theory.

2Perhaps this is because it emerged nearly simultaneously with the path integral and
associated diagrammatic methods of Feynman, whose flamboyant application of those methods
to the field theory problems of the day captured the attention of physicists worldwide, and
thus overshadowed other theoretical developments.
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However, Weyl’s correspondence fails to transform the square of the clas-
sical angular momentum to its accepted quantum analog; and therefore it was
soon recognized to be an elegant, but not intrinsically special quantization pre-
scription. As physicists slowly became familiar with the existence of different
quantum systems sharing a common classical limit, the quest for the right way
to quantization was partially mooted.

In 1931, in establishing the essential uniqueness of Schrödinger’s represen-
tation in Hilbert space, von Neumann utilized the Weyl correspondence as an
equivalent abstract representation of the Heisenberg group in the Hilbert space
operator formulation. For completeness’ sake, ever the curious mathemati-
cian’s foible, he worked out the analog (isomorph) of operator multiplication in
phase space. He thus effectively discovered the convolution rule governing the
noncommutative composition of the corresponding phase-space functions — an
early version of the ⋆-product.

Nevertheless, possibly because he did not use it for anything at the time, von
Neumann oddly ignored his own early result on the ⋆-product and just proceeded
to postulate correspondence rules between classical and quantum mechanics in
his very influential 1932 book on the foundations of QM [13]. In fact, his ardent
follower, Groenewold, would use the ⋆-product to show some of the expectations
formed by these rules to be untenable, 15 years later. But we are getting ahead
of the story.

J von Neumann

Very soon after von Neumann’s paper appeared, in 1932, Eugene Wigner
approached the problem from a completely different point of view, in an effort
to calculate quantum corrections to classical thermodynamic (Boltzmann) av-
erages. Without connecting it to the Weyl correspondence, Wigner introduced
his eponymous function (see Wigner Functions), a distribution which controls
quantum-mechanical diffusive flow in phase space, and thus specifies quantum
corrections to the Liouville density of classical statistical mechanics.

As Groenewold and Moyal would find out much later, it turns out that this
WF maps to the density matrix (up to multiplicative factors of ~) under the
Weyl map. Thus, without expressing awareness of it, Wigner had introduced
an explicit illustration of the inverse map to the Weyl map, now known as the
Wigner map.

Wigner also noticed the WF would assume negative values, which compli-
cated its conventional interpretation as a probability density function. However
— perhaps unlike his sister’s husband — in time Wigner grew to appreciate that
the negative values of his function were an asset, and not a liability, in ensuring
the orthogonality properties of the formulation’s building blocks, the “stargen-
functions” (see Simple Harmonic Oscillator).

Wigner further worked out the dynamical evolution law of the WF, which ex-
hibited the nonlocal convolution features of ⋆-product operations, and violations
of Liouville’s theorem. But, perhaps motivated by practical considerations, he
did not pursue the formal and physical implications of such operations, at least
not at the time. Those and other decisive steps in the formulation were taken
by two young novices, independently, during World War II.

In 1946, based on his wartime PhD thesis work, much of it carried out in
hiding, Hip Groenewold published a decisive paper, in which he explored the
consistency of the classical-quantum correspondences envisioned by von Neu-
mann. His tool was a fully mastered formulation of the Weyl correspondence
as an invertible transform, rather than as a consistent quantization rule. The
crux of this isomorphism is the celebrated ⋆-product in its modern form.

Use of this product helped Groenewold demonstrate how Poisson brackets
contrast crucially to quantum commutators (“Groenewold’s Theorem”). In
effect, the Wigner map of quantum commutators is a generalization of Pois-
son brackets, today called Moyal brackets (perhaps unfairly, given that Groe-
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newold’s work appeared first), which contains Poisson brackets as their classical
limit (technically, a Wigner-Inonü Lie-algebra contraction). By way of illustra-
tion, Groenewold further worked out the harmonic oscillator WFs. Remarkably,
the basic polynomials involved turned out to be those of Laguerre, and not the
Hermite polynomials utilized in the standard Schrödinger formulation! Groe-
newold had crossed over to a different continent.

At the very same time, in England, Joe Moyal was developing effectively
the same theory from a yet different point of view, landing at virtually the op-
posite coast of the same continent. He argued with Dirac on its validity (see
Dirac) and only succeeded in publishing it, much delayed, in 1949. With his
strong statistics background, Moyal focussed on all expectation values of quan-
tum operator monomials, XnPm, symmetrized by Weyl ordering, expectations
which are themselves the numerically valued (c-number) building blocks of every
quantum observable measurement.

Moyal saw that these expectation values could be generated out of a classical-
valued characteristic function in phase space, which he only much later identified
with the Fourier transform used previously by Wigner. He then appreciated
that many familiar operations of standard quantum mechanics could be appar-
ently bypassed. He reassured himself the uncertainty principle was incorporated
in the structure of this characteristic function, and that it indeed constrained
expectation values of “incompatible observables.” He interpreted subtleties in
the diffusion of the probability fluid and the “negative probability” aspects of
it, appreciating that negative probability is a microscopic phenomenon.

Today, students of QMPS routinely demonstrate as an exercise that, in 2n-
dimensional phase space, domains where the WF is solidly negative cannot be
significantly larger than the minimum uncertainty volume, (~/2)

n
, and are thus

not amenable to direct observation — only indirect inference [11].
Less systematically than Groenewold, Moyal also recast the quantum time

evolution of the WF through a deformation of the Poisson bracket into the Moyal
bracket, and thus opened up the way for a direct study of the semiclassical limit
~→ 0 as an asymptotic expansion in powers of ~ — “direct” in contrast to the
methods of taking the limit of large occupation numbers, or of computing expec-
tations of coherent states (see Classical Limit). The subsequent applications
paper of Moyal with the eminent statistician Maurice Bartlett also appeared in
1949, almost simulaneously with Moyal’s fundamental general paper. There,
Moyal and Bartlett calculate propagators and transition probabilities for oscil-
lators perturbed by time-dependent potentials, to demonstrate the power of the
phase-space picture.

M Bartlett

D Fairlie

By 1949 the formulation was complete, although few took note of Moyal’s
and especially Groenewold’s work. And in fact, at the end of the war in
1945, a number of researchers in Paris, such as J Yvon and J Bass, were also
rediscovering the Weyl correspondence and converging towards the same picture,
albeit in smaller, hesitant, discursive, and considerably less explicit steps (see
[20] for a guide to this and related literature).

Important additional steps were subsequently carried out by T Takabayasi
(1954), G Baker (1958, his thesis), D Fairlie (1964), and R Kubo (1964) (again,
see [20]). These researchers provided imaginative applications and filled-in the
logical autonomy of the picture — the option, in principle, to derive the Hilbert-
space picture from it, and not vice versa. The completeness and orthogonality
structure of the eigenfunctions in standard QM is paralleled in a delightful
shadow-dance, by QMPS ⋆-operations (see Pure States and Star Products, and
Simple Harmonic Oscillator).

QMPS can obviously shed light on subtle quantization problems as the com-
parison with classical theories is more systematic and natural. Since the vari-
ables involved are the same in both classical and quantum cases, the connection
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to the classical limit as ~ → 0 is more readily apparent (see Classical Limit).
But beyond this and self-evident pedagogical intuition, what is this alternate
formulation of QM and its panoply of satisfying mathematical structures good
for?

It is the natural language to describe quantum transport, and to monitor de-
coherence of macroscopic quantum states, in interaction with the environment, a
pressing central concern of quantum computing [15]. It can also serve to analyze
and quantize physics phenomena unfolding in an hypothesized noncommutative
spacetime with various noncommutative geometries [17]. Such phenomena are
most naturally described in Groenewold’s and Moyal’s language.

However, it may be fair to say that, as was true for the path integral formu-
lation during the first few decades of its existence, the best QMPS “killer apps”
are yet to come.

Work by CoBrA artist Mogens Balle (1921-1988).
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Appendices

The following supplements expand on the discussion in the text. The first
three are historical commentaries, including biographical material, while the
remaining supplements deal with elementary technical aspects of QMPS.

Dirac

A representative, indeed authoritative, opinion, dismissing even the sugges-
tion that quantum mechanics can be expressed in terms of classical-valued phase
space variables, was expressed by Paul Dirac in a letter to Joe Moyal on 20 April
1945 (see p 135, [1]). Dirac said, “I think it is obvious that there cannot be
any distribution function F (p, q) which would give correctly the mean value of
any f (p, q) ...” He then tried to carefully explain why he thought as he did, by
discussing the underpinnings of the uncertainty relation.

However, in this instance, Dirac’s opinion was wrong, and unfounded, despite
the fact that he must have been thinking about the subject since publishing
some preliminary work along these lines many years before [3]. In retrospect,
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it is Dirac’s unusual misreading of the situation that is obvious, rather than the
non-existence of F (p, q).

Perhaps the real irony here is that Dirac’s brother-in-law, Eugene Wigner,
had already constructed such an F (p, q) several years earlier [19]. Moyal even-
tually learned of Wigner’s work and brought it to Dirac’s attention in a letter
dated 21 August 1945 (see p 159, [1]).

Nevertheless, the historical record strongly suggests that Dirac held fast
to his opinion that quantum mechanics could not be formulated in terms of
classical-valued phase space variables. For example, Dirac made no changes
when discussing the von Neumann density operator, ρ, on p 132 in the final
edition of his book [5]. Dirac maintained “Its existence is rather surprising in
view of the fact that phase space has no meaning in quantum mechanics, there
being no possibility of assigning numerical values simultaneously to the q’s and
p’s.” This statement completely overlooks the fact that the Wigner function
F (p, q) is precisely a realization of ρ in terms of numerical-valued q’s and p’s.

But how could it be, with his unrivaled ability to create elegant theoretical
physics, Dirac did not seize the opportunity so unmistakably laid before him,
by Moyal, to return to his very first contributions to the theory of quantum
mechanics and examine in greater depth the relation between classical Poisson
brackets and quantum commutators? We will probably never know beyond any
doubt — yet another sort of uncertainty principle — but we are led to wonder
if it had to do with some key features of Moyal’s theory at that time. First,
in sharp contrast to Dirac’s own operator methods, in its initial stages QMPS
theory was definitely not a pretty formalism! And, as is well known, beauty
was one of Dirac’s guiding principles in theoretical physics.

Moreover, the logic of the early formalism was not easy to penetrate. It is
clear from his correspondence with Moyal that Dirac did not succeed in cutting
away the formal undergrowth to clear a precise conceptual path through the
theory behind QMPS, or at least not one that he was eager to travel again.3

One of the main reasons the early formalism was not pleasing to the eye, and
nearly impenetrable, may have had to do with another key aspect of Moyal’s
1945 theory: Two constructs may have been missing. Again, while we cannot
be absolutely certain, we suspect the star product and the related bracket were
both absent from Moyal’s theory at that time. So far as we can tell, neither of
these constructs appears in any of the correspondence between Moyal and Dirac.

P Dirac

In fact, the product itself is not even contained in the published form of Moyal’s
work that appeared four years later [12], although the antisymmetrized version
of the product — the so-called Moyal bracket — is articulated in that work as a
generalization of the Poisson bracket,4 after first being used by Moyal to express
the time evolution of F (p, q; t).5 Even so, we are not aware of any historical
evidence that Moyal specifically brought his bracket to Dirac’s attention.

Thus, we can hardly avoid speculating, had Moyal communicated only the
contents of his single paragraph about the generalized bracket6 to Dirac, the latter
would have recognized its importance, as well as its beauty, and the discussion
between the two men would have acquired an altogether different tone. For, as
Dirac wrote to Moyal on 31 October 1945 (see p 160, [1]), “I think your kind
of work would be valuable only if you can put it in a very neat form.” The
Groenewold product and the Moyal bracket do just that.6

3Although Dirac did pursue closely related ideas, at least once [4], in his contribution to
Bohr’s festschrift.

4See Eqn (7.10) and the associated comments in the last paragraph of §7, p 106, [12].
5See Eqn (7.8), [12]. Granted, the equivalent of that equation was already available in

[19], but Wigner did not make the sweeping generalization offered by Moyal’s Eqn (7.10).
6In any case, by then Groenewold had already found the star product, as well as the related

bracket, by taking Weyl’s and von Neumann’s ideas to their logical conclusion, and had it all
published [9] in the time between Moyal’s and Dirac’s last correspondence and the appearance
of [12, 2], wherein discussions with Groenewold are acknowledged by Moyal.
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Groenewold

H Groenewold

Hilbrand Johannes Groenewold

29 June 1910 - 23 November 19967

Hip Groenewold was born in Muntendam, The Netherlands. He studied
at the University of Groningen, from which he graduated in physics with sub-
sidiaries in mathematics and mechanics in 1934.

In that same year, he went of his own accord to Cambridge, drawn by the
presence there of the mathematician John von Neumann, who had given a solid
mathematical foundation to quantum mechanics with his book Mathematische
Grundlagen der Quantenmechanik. This period had a decisive influence on
Groenewold’s scientific thinking. During his entire life, he remained especially
interested in the interpretation of quantum mechanics (e.g. some of his ideas
are recounted in [16]). It is therefore not surprising that his PhD thesis, which
he completed eleven years later, was devoted to this subject [9]. In addition
to his revelation of the star product, and associated technical details, Groe-
newold’s achievement in his thesis was to escape the cognitive straight-jacket
of the mainstream view that the defining difference between classical mechan-
ics and quantum mechanics was the use of c-number functions and operators,
respectively. He understood that these were only habits of use and in no way
restricted the physics.

Ever since his return from England in 1935 until his permanent appointment
at theoretical physics in Groningen in 1951, Groenewold experienced difficulties
finding a paid job in physics. He was an assistant to Zernike in Groningen for
a few years, then he went to the Kamerlingh Onnes Laboratory in Leiden, and
taught at a grammar school in the Hague from 1940 to 1942. There, he met
the woman whom he married in 1942. He spent the remaining war years at
several locations in the north of the Netherlands. In July 1945, he began work
for another two years as an assistant to Zernike. Finally, he worked for four
years at the KNMI (Royal Dutch Meteorological Institute) in De Bilt.

During all these years, Groenewold never lost sight of his research. At his
suggestion upon completing his PhD thesis, in 1946, Rosenfeld, of the University
of Utrecht, became his promoter, rather than Zernike. In 1951, he was offered a
position at Groningen in theoretical physics: First as a lecturer, then as a senior
lecturer, and finally as a professor in 1955. With his arrival at the University
of Groningen, quantum mechanics was introduced into the curriculum.

In 1971 he decided to resign as a professor in theoretical physics in order to
accept a position in the Central Interfaculty for teaching Science and Society.
However, he remained affiliated with the theoretical institute as an extraordi-
nary professor. In 1975 he retired.

In his younger years, Hip was a passionate puppet player, having brought
happiness to many children’s hearts with beautiful puppets he made himself.
Later, he was especially interested in painting. He personally knew several
painters, and owned many of their works. He was a great lover of the after-war
CoBrA art. This love gave him much comfort during his last years.

7The material presented here contains statements taken from a previously published obit-
uary [10].
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Moyal

J Moyal

José Enrique Moyal

1 October 1910 - 22 May 19988

Joe Moyal was born in Jerusalem and spent much of his youth in Palestine.
He studied electrical engineering in France, at Grenoble and Paris, in the early
1930s. He then worked as an engineer, later continuing his studies in mathemat-
ics at Cambridge, statistics at the Institut de Statistique, Paris, and theoretical
physics at the Institut Henri Poincaré, Paris.

After a period of research on turbulence and diffusion of gases at the French
Ministry of Aviation in Paris, he escaped to London at the time of the German
invasion in 1940. The eminent writer C.P. Snow, then adviser to the British
Civil Service, arranged for him to be allocated to de Havilland’s at Hatfield,
where he was involved in aircraft research into vibration and electronic instru-
mentation.

During the war, hoping for a career in theoretical physics, Moyal developed
his ideas on the statistical nature of quantum mechanics, initially trying to get
Dirac interested in them, in December 1940, but without success. After sub-
stantial progress on his own, his poignant and intense scholarly correspondence
with Dirac (Feb 1944 to Jan 1946, reproduced in [1]) indicates he was not aware,
at first, that his phase-space statistics-based formulation was actually equiva-
lent to standard QM. Nevertheless, he soon appreciated its alternate beauty
and power. In their spirited correspondence, Dirac patiently but insistently
recorded his reservations, with mathematically trenchant arguments, although
lacking essential appreciation of Moyal’s novel point of view: A radical de-
parture from the conventional Hilbert space picture [12]. The correspondence
ended in anticipation of a Moyal colloquium at Cambridge in early 1946.

That same year, Moyal’s first academic appointment was in Mathematical
Physics at Queen’s University Belfast. He was later a lecturer and senior
lecturer with M.S. Bartlett in the Statistical Laboratory at the University of
Manchester, where he honed and applied his version of quantum mechanics [2].

In 1958, he became a Reader in the Department of Statistics, Institute of
Advanced Studies, Australian National University, for a period of 6 years. There
he trained several graduate students, now eminent professors in Australia and
the USA. In 1964, he returned to his earlier interest in mathematical physics
at the Argonne National Laboratory near Chicago, coming back to Macquarie
University as Professor of Mathematics before retiring in 1978.

Joe’s interests were broad: He was an engineer who contributed to the
understanding of rubber-like materials; a statistician responsible for the early
development of the mathematical theory of stochastic processes; a theoretical
physicist who discovered the “Moyal bracket” in quantum mechanics; and a
mathematician who researched the foundations of quantum field theory. He
was one of a rare breed of mathematical scientists working in several fields, to
each of which he made fundamental contributions.

8The material presented here contains statements taken from a previously published obit-
uary [7].
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Star Product
The star product is the Weyl correspondent of the Hilbert space operator

product, and was developed through the work of many over a number of years:
H Weyl (1927), J von Neumann (1931), E Wigner (1932), H Groenewold (1946),
J Moyal (1949), and G Baker (1958), as well as more recent work to construct
the product on general manifolds (reprinted in [20], along with related papers).
There are useful integral and differential realizations of the product:

f⋆g =

∫

dx1dp1
2π (~/2)

∫

dx2dp2
2π (~/2)

f (x+ x1, p+ p1) g (x+ x2, p+ p2) exp

(

i

~/2
(x1p2 − x2p1)

)

,

x1p2− x2p1 = Area (1,2 parallelogram) , ~/2 = Planck Area = min (∆x∆p) ,

f ⋆ g = f (x, p) exp

(

←−
∂x

i~

2

−→
∂p −

←−
∂p
i~

2

−→
∂x

)

g (x, p) ,

f ⋆ g = f

(

x+
1

2
i~
−→
∂p , p−

1

2
i~
−→
∂x

)

g (x, p)

= f (x, p) g

(

x−
1

2
i~
←−
∂p , p+

1

2
i~
←−
∂x

)

= f

(

x+
1

2
i~
−→
∂p , p

)

g

(

x−
1

2
i~
←−
∂p , p

)

= f

(

x, p−
1

2
i~
−→
∂x

)

g

(

x, p+
1

2
i~
←−
∂x

)

.

The Moyal bracket, {{f, g}} = 1
i~ [f, g]⋆, is essentially just the antisymmetric

H Weyl

part of a star product, where

[f, g]⋆
defn.
= f ⋆ g − g ⋆ f .

This provides a homomorphism with commutators of operators, e.g. [x, p]⋆ = i~.
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Wigner Functions

Wigner’s original definition of his eponymous function was (Eqn(5) in [19])

P (x1, · · · , xn; p1, · · · , pn) =

(

1

~π

)n ∫ ∞

−∞

· · ·

∫

dy1 · · · dynψ (x1 + y1 · · ·xn + yn)
∗

ψ (x1 − y1 · · ·xn − yn) e
2i(p1y1+···+pnyn)/~ .

So defined, Wigner functions (WFs) reside in phase space.
WFs are the Weyl-correspondents of von Neumann’s density operators, ρ.

Thus, in terms of Hilbert space position and momentum operators X and P ,
we have9

ρ =
~
n

(2π)
2n

∫

dnτdnσdnxdnpP (x1, · · · , xn; p1, · · · , pn) exp (iτ · (P − p) + iσ · (X − x)) .

In one x and one p dimension, denoting the WF by F (x, p) instead of P (in
deference to the momentum operator P ), we have

F (x, p) =
1

π~

∫

dy 〈x+ y| ρ |x− y〉 e−2ipy/~ ,

〈x+ y| ρ |x− y〉 =

∫

dpF (x, p) e2ipy/~ ,

ρ = 2

∫

dxdy

∫

dp |x+ y〉 F (x, p) e2ipy/~ 〈x− y| .

For a quantum mechanical “pure state”

F (x, p) =
1

π~

∫

dy ψ (x+ y) ψ∗ (x− y) e−2ipy/~ ,

ψ (x+ y) ψ∗ (x− y) =

∫

dpF (x, p) e2ipy/~ ,

ρ= |ψ〉 〈ψ| ,

where as usual, ψ (x+ y) = 〈x+ y |ψ〉 , 〈ψ| x− y〉 = ψ∗ (x− y). Direct ap-
plication of the Cauchy–Bunyakovsky–Schwarz inequality to the first of these
pure-state relations gives

|F (x, p)| ≤
1

π~

∫

dy |ψ (y)|
2
.

So, for normalized states with
∫

dy |ψ (y)|
2
= 1, we have the bounds

−
1

π~
≤ F (x, p) ≤

1

π~
.

Such normalized states therefore cannot give probability spikes (e.g. Dirac
deltas) without taking the classical limit ~ → 0. The corresponding bound in
2n phase-space dimensions is given by the same argument applied to Wigner’s
original definition: |P (x1, · · · , xn; p1, · · · , pn)| ≤

(

1
~π

)n
. E Wigner

9Remark on units: As defined by Wigner, WFs have units of 1/~n in 2n-dimensional
phase space. Since it is customary for the density operator to have no units, a compensating
factor of ~n is required in the Weyl correspondence relating WFs to ρs. Issues about units
are most easily dealt with if one works in “action-balanced” x and p variables, whose units
are [x] = [p] =

√
~.
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Pure States and Star Products
Pure-state Wigner functions must obey a projection condition. If the nor-

malization is set to the standard value

∫∫ +∞

−∞

dxdpF (x, p) = 1 ,

then the function corresponds to a pure state if and only if

F = (2π~) F ⋆ F .

These statements correspond to the pure-state density operator conditions:
Tr (ρ) = 1 and ρ = ρ ρ, respectively.

If both of the above are true, then F describes an allowable pure state for a
quantized system. Otherwise not. You can easily satisy only one out of these
two conditions, but not the other, using an F that is not a pure state.

Without drawing on the Hilbert space formulation, it may at first seem to be
rather remarkable that explicit WFs actually satisfy the projection condition (cf.
the above Gaussian example, for the only situation where it works, a = b = 1,
i.e. exp

(

−
(

x2 + p2
)

/~
)

). However, if F is known to be a ⋆ eigenfunction with
non-vanishing eigenvalue of some phase-space function with a non-degenerate
spectrum of eigenvalues, then it must be true that F ∝ F ⋆ F as a consequence
of associativity, since both F and F ⋆ F would yield the same eigenvalue.

Exercises
Some simple exercises for students to sharpen their QMPS skills. Show the

following.

Exercise 1 Non-commutativity.

eax+bp ⋆ eAx+Bp = e(a+A)x+(b+B)p e(aB−bA)i~/2

6=

eAx+Bp ⋆ eax+bp = e(a+A)x+(b+B)p e(Ab−Ba)i~/2

Exercise 2 Associativity.

(

eax+bp ⋆ eAx+Bp
)

⋆ eαx+βp

= e(a+A+α)x+(b+B+β)p e(aB−bA+aβ−bα+Aβ−Bα)i~/2

= eax+bp ⋆
(

eAx+Bp ⋆ eαx+βp
)

Exercise 3 Trace properties. (a.k.a. “Lone Star Lemma”)

∫

dxdp f ⋆ g =

∫

dxdp f g =

∫

dxdp g f =

∫

dxdp g ⋆ f

Exercise 4 Gaussians. For a, b ≥ 0,

exp
(

−
a

~

(

x2 + p2
)

)

⋆ exp

(

−
b

~

(

x2 + p2
)

)

=
1

1 + ab
exp

(

−
a+ b

(1 + ab)~

(

x2 + p2
)

)

.

Additional exercises may be culled from the first chapter of [20].
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The Simple Harmonic Oscillator
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There is no need to deal with wave functions or Hilbert space states. The
WFs may be constructed directly on the phase space [9, 2]. Energy eigenstates
are obtained as (real) solutions of the ⋆-genvalue equations [6, 20]:

H ⋆ F = E F = F ⋆ H .

To illustrate this, consider the simple harmonic oscillator (SHO) with (m = 1,
ω = 1)

H =
1

2

(

p2 + x2
)

.

The above equations are now second-order partial differential equations,

H ⋆ F =
1

2

(

(

p−
1

2
i~ ∂x

)2

+

(

x+
1

2
i~ ∂p

)2
)

F = EF ,

F ⋆ H =
1

2

(

(

p+
1

2
i~ ∂x

)2

+

(

x−
1

2
i~ ∂p

)2
)

F = EF .

But if we subtract (or take the imaginary part),

(p∂x − x∂p)F = 0 ⇒ F (x, p) = F
(

x2 + p2
)

.

So H ⋆ F = EF = F ⋆ H reduces to a single ordinary differential equation
(Laguerre, not Hermite!), namely, the real part of either of the previous second-
order equations.

There are integrable solutions if and only if E = (n+ 1/2)~, n = 0, 1, · · ·
for which

Fn (x, p) =
(−1)n

π~
Ln

(

x2 + p2

~/2

)

e−(x
2+p2)/~ ,

Ln (z) =
1

n!
ez
dn

dzn
(

zne−z
)

.

The normalization is chosen to be the standard one
∫∫ +∞

−∞
dxdpFn (x, p) = 1.

Except for the n = 0 ground state (Gaussian) WF, these F ’s change sign on the
xp-plane. For example: L0 (z) = 1, L1 (z) = 1− z, L2 (z) = 1− 2z + 1

2z
2, etc.

Using the integral form of the ⋆ product, it is now easy to check these pure
states are ⋆ orthogonal:

(2π~) Fn ⋆ Fk = δnk Fn .

This becomes more transparent by using ⋆ raising/lowering operations to write10

Fn =
1

n!
(a∗⋆)

n
F0 (⋆a)

n

=
1

π~n!
(a∗⋆)n e−(x

2+p2)/~ (⋆a)n ,

where a is the usual linear combination a ≡ 1√
2~
(x + ip), and a∗ is just its

complex conjugate a∗ ≡ 1√
2~
(x− ip) , with a ⋆ a∗− a∗ ⋆ a = 1, and a ⋆ F0 = 0 =

F0 ⋆ a
∗ (cf. coherent state density operators).

10Note that the earlier exercise giving the star composition law of Gaussians immediately
yields the projection property of the SHO ground state WF, F0 = (2π~)F0 ⋆ F0.
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The Uncertainty Principle

Expectation values of all phase-space functions, say G (x, p), for a system
described by F (x, p) (a real WF, normalized to 1) are just integrals of ordinary
products (cf. Lone Star Lemma)

〈G〉 =

∫

dxdpG (x, p) F (x, p) .

These can be negative, even though G is positive, if the WF flips sign. So

how do we directly establish simple correct statements such as
〈

(x+ p)
2
〉

≥ 0

without using marginal probabilities or invoking Hilbert space results?
The roles of positive-definite Hilbert space operators are played on phase

space by real star-squares :

G (x, p) = g∗ (x, p) ⋆ g (x, p) .

These always have non-negative expectation values for any g and any WF,

〈g∗ ⋆ g〉 ≥ 0 ,

even if F becomes negative. (Note this is not true if the ⋆ is removed! If g∗ ⋆ g

is supplanted by |g|
2
, then integrated with a WF, the result could be negative.)

To show this, first suppose the system is in a pure state. Then use F =
(2π~) F⋆F (see Pure States and Star Products), and the associativity and trace
properties (see Exercises), to write:11

∫

dxdp (g∗ ⋆ g) F = (2π~)

∫

dxdp (g∗ ⋆ g) (F ⋆ F )

= (2π~)

∫

dxdp (g∗ ⋆ g) ⋆ (F ⋆ F )

= (2π~)

∫

dxdp (g∗ ⋆ g ⋆ F ) ⋆ F

= (2π~)

∫

dxdp F ⋆ (g∗ ⋆ g ⋆ F )

= (2π~)

∫

dxdp (F ⋆ g∗) ⋆ (g ⋆ F )

= (2π~)

∫

dxdp (F ⋆ g∗) (g ⋆ F )

= (2π~)

∫

dxdp |g ⋆ F |2

≥ 0 .

In the next to last step we also used the elementary property (g ⋆F )∗ = F ⋆g∗.
More generally, if the system is in a mixed state, as defined by a normal-

ized probabilistic sum of pure states, F =
∑

j PjFj , with probabilities Pj ≥ 0
satisfying

∑

j Pj = 1, then the same inequality holds.

11By essentially the same argument, if F1 and F2 are two distinct pure state WFs,
the phase-space overlap integral between the two is also manifestly non-negative and
thus admits interpretation as the transition probability between the respective states:

∫
dxdpF1F2 = (2π~)2

∫
dxdp |F1 ⋆ F2|

2 ≥ 0 .
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Correlations of observables follow conventionally from specific choices of
g(x, p). For example, to produce Heisenberg’s uncertainty relation, take

g (x, p) = a+ bx+ cp ,

for arbitrary complex coefficients a, b, c. The resulting positive semi-definite
quadratic form is then

〈g∗ ⋆ g〉 =
(

a∗ b∗ c∗
)





1 〈x〉 〈p〉
〈x〉 〈x ⋆ x〉 〈x ⋆ p〉
〈p〉 〈p ⋆ x〉 〈p ⋆ p〉









a
b
c



 ≥ 0 ,

for any a, b, c. All eigenvalues of the above 3× 3 hermitian matrix are therefore
non-negative, and thus so is its determinant,

det





1 〈x〉 〈p〉
〈x〉 〈x ⋆ x〉 〈x ⋆ p〉
〈p〉 〈p ⋆ x〉 〈p ⋆ p〉



 ≥ 0 .

But

x ⋆ x = x2 , p ⋆ p = p2 , x ⋆ p = xp+ i~/2 , p ⋆ x = xp− i~/2 ,

and with the usual definitions of the variances

(∆x)2 ≡ 〈(x− 〈x〉)2〉 , (∆p)2 ≡ 〈(p− 〈p〉)2〉 ,

the positivity condition on the above determinant amounts to

(∆x)2(∆p)2 ≥
1

4
~
2 + (〈xp〉 − 〈x〉〈p〉)2 .

Hence Heisenberg’s relation

(∆x) (∆p) ≥ ~/2 .

The inequality is saturated for a vanishing original integrand g ⋆F = 0, for suit-
able a, b, c, when the 〈xp〉− 〈x〉〈p〉 term vanishes (i.e. x and p statistically inde-
pendent, as happens for a Gaussian pure state, F = 1

π~ exp
(

−
(

x2 + p2
)

/~
)

). W Heisenberg

A Classical Limit
The simplest illustration of the classical limit, by far, is provided by the

SHO ground state WF. In the limit ~ → 0 a completely localized phase-space
distribution is obtained, namely, a Dirac delta at the origin of the phase space:

lim
~→0

1

π~
exp

(

−
(

x2 + p2
)

/~
)

= δ (x) δ (p) .

Moreover, if the ground state Gaussian is uniformly displaced from the origin
by an amount (x0, p0) and then allowed to evolve in time, its peak follows a
classical trajectory (see Movies ... this simple behavior does not hold for less
trivial potentials). The classical limit of this evolving WF is therefore just a
Dirac delta whose spike follows the trajectory of a classical point particle moving
in the harmonic potential:

lim
~→0

1

π~
exp

(

−
(

(x− x0 cos t− p0 sin t)
2
+ (p− p0 cos t+ x0 sin t)

2
)

/~
)

= δ (x− x0 cos t− p0 sin t) δ (p− p0 cos t+ x0 sin t) .
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