
PHYS 414 Problem Set 5: Unzipping and decohering

Problem 1

folded state unfolded state

Figure 1: Two possible states of a
biomolecular system in an AFM appa-
ratus with a given extension x, and the
corresponding state energies En(x).

The goal of this problem is to directly verify two
nonequilibrium �uctuation theorems (integral and
Jarzynski) through a computational experiment: sim-
ulating an AFM apparatus where the extension of a
biomolecular construct is varied in time, driving the sys-
tem between di�erent possible states. This is the numer-
ical analogue of the RNA hairpin unzipping experiments
where these �uctuation theorems were �rst con�rmed
over a decade ago (see references on the course website).
The model consists of a protein molecule in solution at-
tached to the AFM tip and a �xed surface by polymer
handles (Fig. 2). The entire protein-handle system can
be roughly approximated as an elastic spring of total extension x with spring constant k1 (in the
case where the protein is folded) or k2 (if the protein is unfolded). Since the folded structure is
more rigid than the unfolded one, k1 > k2. There is one additional energy contribution besides
the spring potential: folding lowers the protein energy by an amount ε > 0, which makes the
folded state more favorable at small extensions. The resulting energies of state 1 (folded) and
state 2 (unfolded) are:

E1(x) =
1

2
k1x

2 − ε, E2(x) =
1

2
k2x

2. (1)

The transition rates between the two states, W12(x) and W21(x), satisfy detailed balance,
W12(x)/W21(x) = e−β(E1(x)−E2(x)), where β = 1/kBT . Hence we will write them in the form:

W12(x) = ωeβE2(x), W21(x) = ωeβE1(x), (2)

with a prefactor ω.

A single experimental run consists of starting the system with an extension x = x0, and keeping
it there for a long time until equilibrium is achieved. Then the experimentalist increases the
extension x from x0 to xM over a time τ . Let us de�ne an average pulling velocity v = (xM −
x0)/τ . For ease of computation, we will approximate pulling at constant velocity by a uniform
series of small discrete jumps: divide the time interval τ into M parts of length ∆t = τ/M . At
the beginning of each ∆t interval (at time ti = i∆t for i = 0, . . . ,M − 1), the extension x is
suddenly increased by an amount ∆x = v∆t. Assuming the system was in state ni at time ti,
with initial extension xi = x0 + i∆x (and remains in state ni through the instantaneous increase
in x), then the work done on the system in this jump is Eni(xi+1) − Eni(xi). After each jump,
the extension is kept constant through the following ∆t interval, and the system can �uctuate
between states, eventually arriving at state ni+1 at time ti+1. Then the jump process repeats. The
total work done by the system during the entire trajectory ν = (n0, n1, . . . , nM) is just minus
the total work done on the system: ∆W (ν) = −

∑M−1
i=0 [Eni(xi+1)− Eni(xi)]. The jump at time

tM−1 is the last one, and afterwards the system is kept at extension xM until it equilibrates again.

1



Part A: Setting up the experiment

We will be designing a numerical algorithm to simulate trajectories ν and collect statistics on the
work ∆W (ν). There are several analytical calculations that we need to carry out before we can
put together the algorithm:

a) The �rst step in any trajectory is choosing an initial state n0 at time t0 from the equilibrium
distribution psn0

(x0). Find analytical expressions for the partition function Z(T, x0) of the system
and the corresponding equilibrium probabilities psn0

(x0) for n0 = 1 and n0 = 2.

b) During the interval between ti and ti+1 where we keep the system at �xed extension xi+1,
the system can make transitions between states, or stay in the same state. Let us now �gure out
the probability of whether a transition occurs or not during this interval. The transition matrix
elements Wmn(xi+1) are constant for times t between ti and ti+1. Hence write down the master
equation for p1(t) and p2(t), where ti+1 ≥ t ≥ ti, and solve it for arbitrary initial conditions
p1(ti) and p2(ti). (Hint: plugging in p2(t) = 1 − p1(t) into the equation for ṗ1(t) allows you to
change a coupled set of di�erential equations into an equation for a single function. Once you
solve for p1(t), you automatically know p2(t).) If you now substitute p1(ti) = 1, p2(ti) = 0 as
initial conditions, you should �nd that the expression for p1(ti+1) takes the form:

W12(xi+1) +W21(xi+1)e−∆t(W12(xi+1)+W21(xi+1))

W12(xi+1) +W21(xi+1)
≡ p11(xi+1)

Here we will use p11 as shorthand to denote the probability that the system is in state 1 at ti+1 if
it was in state 1 at time ti. Similarly if you substitute p1(ti) = 0, p2(ti) = 1 into your solution,
you should �nd that p2(ti+1) looks like:

W21(xi+1) +W12(xi+1)e−∆t(W12(xi+1)+W21(xi+1))

W12(xi+1) +W21(xi+1)
≡ p22(xi+1)

Here p22 denotes the probability that the system is in state 2 at ti+1 if it was in state 2 at time
ti. The probabilities of switching are related by normalization: p21 = 1 − p11 (the probability to
switch from 1 to 2), and p12 = 1− p22 (the probability to switch from 2 to 1).

We are now ready to construct the numerical algorithm. The parameters of each experimental
run are as follows:

k1 = 0.05 kBT/nm2, k2 = 0.01 kBT/nm2, ε = 80 kBT, ω = 5× 10−9 s−1

M = 100, x0 = 62.5 nm, xM = 64 nm
(3)

We will be considering di�erent velocities v across the range 10−2 − 102 nm/s.

c) Design a program that numerically outputs a trajectory ν and the work ∆W (ν) done by the
system during that trajectory. Hint: To choose an initial state n0, get a random number r between
0 and 1. If r ≤ ps1(x0), let n0 = 1; otherwise let n0 = 2. This ensures that n0 is distributed
according to the equilibrum stationary probability. You can use similar tricks to get subsequent
states ni in ν. For example, if ni = 1, choose a random number r′ between 0 and 1. If r′ ≤ p11,
then let ni+1 = 1; otherwise let ni+1 = 2. This works analogously for ni = 2, but using p22.
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d) To check your program, choose a very slow pulling velocity, v = 10−2 nm/s or lower. Since
this approximately corresponds to a reversible process, ∆S int(ν) = −T−1(∆W (ν) + ∆F ) ≈ 0,
the work done by the system in a single trajectory ∆W (ν) should be roughly equal to −∆F .
Remember that ∆F = F s(T, xM)− F s(T, x0), and can be calculated exactly using the partition
function from part a, since F s(T, x) = −kBT lnZ(T, x). If your ∆W (ν) does not equal −∆F
within a small discrepancy (a fraction of a kBT ), then you have a problem with your code or your
analytical derivation. Fix it before proceeding to the next part!

Part B: Data collection and analysis

e) First we pay due to the laws of nature: collect a large number of trajectories (on the order of
one thousand) and verify the integral �uctuation theorem (IFT), 〈e−∆Sint(ν)/kB〉 = 1. This involves
calculating e−∆Sint(ν)/kB for each trajectory ν, and then averaging this quantity over all the trajec-
tories you collected. Remember that ∆W (ν) = −∆F − T∆S int(ν), so knowing ∆F beforehand
and �nding ∆W (ν) from the simulation allows you to calculate a value for ∆S in(ν). The com-
puted average 〈e−∆Sint(ν)/kB〉 will di�er slightly from 1 due to having a �nite number of trajecto-
ries. Do this for v = 10−2, 10−1, 100, 101, and 102 nm/s, and note that the IFT works regardless of
how fast or slow you pull. Plot histograms of ∆S int(ν) for each of these pulling speeds, and note
how the distribution changes qualitatively with v. What is the fraction of entropy-destroying tra-
jectories in each case? Regardless of these qualitative changes in distribution shape, the quantity
〈e−∆Sint(ν)/kB〉 = 1 stays �xed, which is quite remarkable.

f) In collecting the trajectories, you obtained more than just information about the total ∆S int(ν)
and ∆W (ν) in each trajectory. De�ne partial sums of the work done along the trajectories,

∆Wµ(ν) = −
µ−1∑
i=0

[Eni(xi+1)− Eni(xi)] , (4)

where ∆WM(ν) = ∆W (ν). Note that ∆Wµ(ν) for µ < M corresponds to the work done in an
experiment where xwas stopped at xµ instead of xM . We can now use this information, together
with the Jarzynski equality, to calculate equilibrium free energy di�erencesF s(T, xµ)−F s(T, x0)
for µ = 1, . . . ,M . The Jarzynski equality states that:

〈eβWµ(ν)〉 = e−β(F s(T,xµ)−F s(T,x0)) (5)

Use this equation to obtain a plot of F s(T, xµ)−F s(T, x0) versus xµ. Check that you get roughly
the same answer regardless of the pulling speed v, and that all your estimates agree with the
analytically predicted free energy di�erence obtained from the partition function in the previous
part. Graphically, this means that all your numerical results at di�erent v and the analytical curve
should overlap. This procedure is one example of free energy reconstruction using the Jarzynski
equality, a method that is useful in both experimental and numerical contexts.
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Problem 2: Decoherence at work
In class we discussed how a quantum measurement on a system can be seen as one speci�c
example of an interaction of a system with some external environment. Here we will generalize
that idea to “imperfect” measurements, where we imagine that our environment acts like an
error-prone measurement apparatus.

a) Let us imagine that at time twe have a qubit ensemble with some arbitrary density matrix ρ̂(t).
The matrix elements of this operator in the basis {|0〉, |1〉} are denoted as ρij(t) = 〈i|ρ̂(t)|j〉. Be-
tween time t and t+δt, the environment (apparatus) does a measurement projecting the system on
the {|0〉, |1〉} basis. Imagine the measurement was a traditional, perfect quantum measurement:
if your apparatus output 0, the system state post-measurement would be |0〉, and if it output 1,
the system state post-measurement would be |1〉. For a perfect apparatus, what is the probability
of measuring 0, and what is the probability of measuring 1, in terms of ρij(t)?

b) An imperfect apparatus is de�ned as follows. For an initial density matrix ρ̂(t) it measures 0
with the same probability derived above, but it occasionally messes up the wavefunction collapse:
the system will be in the wrong state |1〉 post-measurement of 0 with small probability ε10, and
the correct state |0〉 with probability 1 − ε10. Analogously the apparatus measures 1 with the
same probability derived in part a, but results in the wrong system state |0〉 with probability ε01,
and the right state |1〉 with probability 1 − ε01. Write down the density matrix ρ̂(t + δt) post-
measurement. Hint: Remember post-measurement you are either in state |0〉 or |1〉. To �nd the
corresponding density matrix ρ̂(t + δt), you need to know what fraction of your ensemble is in
either state, given that you started pre-measurement with ρ̂(t).

c) Show that you can express your answer from part b in the form of a Kraus representation:

ρ̂(t+ δt) =
4∑

k=1

M̂kρ̂(t)M̂ †
k

Find the four Kraus operators M̂k, and verify that
∑

k M̂
†
kM̂k = Î , where Î is the identity.

d) By writing the equation for ρ̂(t + δt) explicitly in terms of matrix elements in the {|0〉, |1〉}
basis, and dividing by δt, show that you can rearrange the results to look like a classical master
equation for the diagonal elements:

dρ00(t)

dt
= W01ρ11(tt)−W10ρ00(t)

dρ11(t)

dt
= W10ρ00(tt)−W01ρ11(t)

where dρii(t)/dt = (ρii(t + δt) − ρii(t))/δt. Find expressions for the transition rates Wij . Also
show that ρ01(t + δt) = ρ10(t + δt) = 0, and hence the o�-diagonal elements of ρ̂(t) are sent to
zero after the imperfect measurement: a simple example of decoherence in action.
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