
PHYS 414 Problem Set 1: Aliens and amino acids
Problem 1: Are we alone in the universe?

Figure 1: Datapoint #1: fossilized evidence of
microbial communities dating back to 3.5 billion
years ago, discovered in western Australia [Nof-
fke et al., Astrobiology 13, 1103 (2013)].

In this problem we will see how Bayesian
analysis can help us estimate model parame-
ters even in the extreme case of a single dat-
apoint: life had to arise on Earth earlier than
3.5 Gyr (gigayears) ago (see Fig. 1 for the old-
est fossilized evidence currently known). As of
now we have no other datapoints of life exist-
ing anywhere in the universe (though accord-
ing to a study published in January 2015 there
are tantalizing indications that the Curiosity
rover on Mars may be on the verge of adding
another datapoint; see part f of this problem
for an actual calculation of what this would
imply). In general, can we say anything about
the likelihood of life arising from non-living
matter, a process known as abiogenesis? Life began early in the Earth’s history: the Earth is 4.5
Gyr old, and life arose within the �rst 1 Gyr of its existence, though almost certainly not within
the �rst 0.5 Gyr because conditions on the very early Earth were inhospitable. This fact seems to
support the idea that abiogenesis is a typical occurrence in the universe, fueling optimism about
life existing on many Earth-like exoplanets in habitable zones around Sun-like stars. The current
estimate based on data from the Kepler spacecraft is that there could be roughly ≈ 1010 such
planets in the Milky Way alone [Petigura et al., Proc. Natl. Acad. Sci. 110, 19273 (2013)]. If they
are of comparable age to the Earth, what fraction of them harbor life? Is the optimism justi�ed?

A more careful evaluation using Bayesian analysis was performed by David Spiegel and Edwin
Turner [Proc. Natl. Acad. Sci. 109, 395 (2012); posted on the course website]. We will derive
(in simpli�ed form) a version of their main results. The goal is to determine the conditional
probability P(M(x)|D). HereM(x) is the theoretical model for abiogenesis, which depends on
some parameter(s) x (in our case it will be a single parameter). D is the data, which consists of
humans having “measured” that life arose on earth by a time temerge ≈ 1 Gyr after the planet’s
formation. Since P(M(x)) can be interpreted as the probability of the model being true for a
speci�c value of x, the conditional probability P(M(x)|D) encapsulates what we can say about
x given the existing data. To evaluate it, we use Bayes’s rule:

P(M(x)|D) =
P(D|M(x))P(M(x))

P(D)
(1)

The denominatorP(D) is a independent of x, so we can treat it as a normalization constant ensur-
ing that

∫
dxP(M(x)|D) = 1. To complete the analysis, we need expressions for P(D|M(x))

and P(M(x)). The latter represents our prior knowledge (rough guess-work!) about x. Let us
�nd each of these expressions in turn.
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a) The �rst ingredient is a model for abiogenesis. We start with the assumption that conditions
on a planet right after its formation will not allow life, up until some minimum time tmin has
passed. If t = 0 is the time of planetary formation, we will �x tmin ≈ 0.5 Gyr, assuming it is
comparable for all Earth-like planets. Though abiogenesis is a complex series of chemical events,
we can combine them all into a single overall “reaction”, which happens at an unknown constant
rate λ (a Poisson process) for all times t ≥ tmin. More precisely, λ is the probability per unit
time of abiogenesis, so that the probability of life arising in some short interval dt is λdt (or
equivalently, 1−λdt is the probability that life did not arise in this interval). The probabilities in
each consecutive interval (i.e. t to t+dt and t+dt to t+ 2dt) are independent of each other. This
model does not preclude life arising independently multiple times, but we are only interested in
the �rst instance. Given the above assumptions, use the laws of probability (and the limit dt→ 0)
to show that the probability that no life has arisen up to time t after a planet’s formation is:

Pno-life(λ, t) =

{
1 0 ≤ t < tmin

e−λ(t−tmin) t ≥ tmin
(2)

Hence the probability that life has arisen (at least once) before time t isPlife(λ, t) = 1−Pno-life(λ, t).
This will be our main model, governed by a single parameter λ which we would like to pinpoint.
(As we will see in part c, we will do this by estimating x ≡ log10 λ, the overall order of magnitude.)

b) To get a sense of the physical meaning of λ, show that the above model predicts the mean
time at which life arose as 〈t〉 = tmin + λ−1. Hint: Which probability distribution do you use to
evaluate 〈t〉? Do not just plug in Plife(λ, t), since this is a cumulative distribution: it measures the
probability of life emerging at any time before t. How do you �nd the probability of life emerging
just during some small interval t to t+ dt?

c) If you assume λ is set by fundamental chemistry and is the same throughout the universe, let
us get a feel for the consequences of its scale. Find the di�erent numerical values of λ (in units
of Gyr−1) that would imply the following facts are true for Earth-like planets of comparable age
to ours (t0 = 4.5 Gyr):

• λ1: on average, we are the only such planet at the present time in the entire observable
universe where life has emerged (out of ≈ 1020 Earth-like planets of similar age in the
universe)

• λ2: on average, we are the only such planet at the present time in the Milky Way where
life has emerged (out of ≈ 1010 Earth-like planets of similar age in our galaxy)

• λ3: on average, life emerges 1 million years after tmin. This would virtually guarantee that
every Earth-like planet of comparable age in the universe has life.

From top to bottom, these give you a sense of the immense breadth of possible λ values.
Since we do not even have a grasp of its order of magnitude, our prior probability distribution
P(M(λ)) should re�ect this. Let us de�ne x = log10 λ and say that all orders of magnitude
between xmin = log10 λ1 and xmax = log10 λ3 are equally probable. Writing M(x) instead of
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M(λ) we will choose our prior probability distribution to be:

P(M(x)) =

{
1

xmax−xmin
if xmin ≤ x ≤ xmax

0 x < xmin or x > xmax
(3)

d) The implications of our single datapointD are more complicated than just specifying an upper
bound on Earth’s abiogenesis. What D really states is that: “an intelligent life form on Earth
was able to gather evidence at the present time (t0 = 4.5 Gyr) showing that life started before
a time temerge = 1 Gyr in the Earth’s history.” This presupposes that enough time has passed
between temerge and the t0 for evolution to produce a scienti�cally-advanced species capable of
investigating fossil evidence of abiogenesis. If life on Earth emerged at t = 4.0 Gyr, there almost
certainly would not be enough time for evolution to produce a species to collect the datapoint D
at t0. Let us specify a minimum time delay δtevolve for the evolution of an intelligent species after
abiogenesis. Then only abiogenesis events where temerge < t0 − δtevolve ≡ trequired could have any
possibility of being measured. Let us choose δtevolve = 1 Gyr to set a rough time scale (probably on
the short side) for the evolution of intelligence, so trequired = 3.5 Gyr is the cuto� for measurable
abiogenesis required by evolutionary constraints. Let E be the statement “abiogenesis occurred
between tmin and temerge”, andR be the statement “abiogenesis occurred between tmin and trequired”.
Then we will take P(D|M(x)) to mean P(E|R,M(x)), or the probability that E is true given
that R and the modelM(x) are true. Using the laws of probability and the result of part a, argue
that for any measured value of temerge,

P(D|M(x)) =

{
Plife(10

x,temerge)
Plife(10x,trequired)

if tmin ≤ temerge ≤ trequired

0 if temerge < tmin or temerge > trequired
(4)

Hint: Think about the de�nition of conditional probability. Also note that if tmin ≤ temerge ≤
trequired, then R is de�nitely true if E is true.

Figure 2: Datapoint #2 (hypothetical):
the Gillespie lake outcrop on Mars ex-
hibiting potential signs of microbial
structures.

e) Putting the result of parts c and d together, use Bayes’s
rule to determine the posterior probability P(M(x)|D).
Make sure to normalize by choosing some appropriate
numerical value for P(D). Plot P(M(x)|D) versus x to
see how the probability behaves. Using numerical inte-
gration, �gure out the probability that x is between xmin
and xmid = log10 λ2. Let us call this probability pL, where
L represents extreme loneliness (we are surely alone in
our galaxy, and possibly the observable universe). On
the other extreme, �gure out the probability pM that 99%
or more of Earth-like planets of comparable age to ours
have seen life emerge. M represents “the more the mer-
rier.” How do you like these odds? While pM is greater,
pL is still signi�cant, making choosing between these op-
tions a tossup. Hint: you may �nd your numerical inte-
grator (Mathematica!?!) gives nonsense when you try to extend the integration range down to
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xmin. To resolve this, use the λ→ 0 limit of Eq. (4) (it goes to a simple constant) when integrating
below xmid. Use the full expression above xmid.

f) Nora No�ke, the geobiologist responsible for discovering the oldest fossils on Earth (Fig. 1)
published an article recently analyzing photos taken by the Curiosity rover on Mars (Fig. 2; see the
write-up at: http://shar.es/1bNqS7). She makes a case that Mars exhibits structures remarkably
similar to fossilized microbial mats seen on Earth. If these speculations are proven to be true, we
would have a second datapoint. What would be the consequences? The Gillespie lake outcrop
on Mars where these photos were taken is 3.7 Gyr old, so tMars

emerge = 0.8 Gyr (Mars has the same
age as Earth). Assuming tmin is unchanged for Mars, and that life arose there independently of
Earth, how would P(D|M(x)) change with two datapoints? Recalculate pL and pM from part e
(be careful to �nd the new normalization constant of the distribution �rst). That’s a big pretty
big di�erence, no? Stay tuned: searching for fossilized microbial mats is a major target for the
upcoming Mars 2020 rover.

Note: a more complete Bayesian analysis would have allowed the other parameters like tmin
and δtevolve to vary, with appropriately chosen prior probabilities. This would be signi�cantly
more complex, beyond the scope of the problem set. If you are overly bothered by these limita-
tions, feel free to do the analysis and write a research article!

Problem 2: The Levinthal paradox of protein folding

Figure 3: Di�erent stages in the folding of a pro-
tein, denoted by the number of amino acids (n
out of a total N ) that are not in their correct
folded structure. Image adapted from: Löw et al.,
PNAS 105, 3779 (2008).

A chain of amino acids can assume an
astronomical number of con�gurations, of
which one corresponds to the folded, biolog-
ically functional state of a protein. (In reality
the folded state �uctuates to a degree and does
not necessarily have to be a unique con�gura-
tion, but for simplicity let us assume there is
only one folded con�guration.) The Levinthal
paradox poses the following question: how is
it possible for the protein to �nd the correct
con�guration in a short amount of time if it
does a random search among all the possibil-
ities? We will explore and resolve this para-
dox, retracing the path of Zwanzig, Szabo, and
Bagchi in a classic paper [Proc. Natl. Acad.
Sci. 89, 20 (1992); on the course website].

a) In the simplest picture, if you have a chain
ofN amino acids, each amino acid has two op-
tions: it could either be in its correct folded
structure (C), or it could be in an incorrect
form (I). Thus you have 2N possible con�gura-
tions. Assume switching states for each amino
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acid is a Poisson process (see Problem 1) with the same rate k in either direction, and occurs
independently of the others. Show that the mean time between protein con�gurational changes
(i.e. any of theN amino acids switching) is (Nk)−1, or equivalently that the mean rate of protein
change is Nk. Hint: think about the probability that no changes occur in any of the N amino
acids over some time interval t. The probability that at least one change has happened is 1 minus
this expression.

If we accept the above picture, the mean time it would take to �nd the folded state would be
on the order of 2N(Nk)−1. For typical protein values like N = 100 and k = 1 ns−1, this would
be around 4×1011 years. Yet proteins usually fold on timescales of∼ 1 ms. How is this possible?

b) The resolution is to consider that the search among con�gurations may be biased: the Poisson
rate k0 from C to I may be di�erent than the reverse rate k1 from I to C. If an amino acid can
lower its energy by assuming a correct form, then it is more likely to stay in that form (k0 < k1).
The size of the ratioK ≡ k0/k1 determines the degree of bias: K = 0 would be the most extreme
bias, with no changes from C back to I allowed, and K = 1 would be the unbiased case discussed
above. Let us label the overall state of the protein by n, the number of amino acids in the incorrect
state (so n = 0 corresponds to folded; see Fig. 3). Show that the mean rate of going from protein
state n to n− 1 is nk1, and that the mean rate of going from n to n+ 1 is (N − n)k0.

c) The information from part b allows you to construct the full transition matrix Wnn′ for the
protein, and think about the problem from a master equation perspective. (We assume the only
allowed transitions are n to n−1 and n to n+ 1.) The goal will be to calculate the mean duration
it takes to go from some initial state n > 0 and reach the folded state n = 0 for the �rst time.
Since we only care about how long it takes to reach n = 0, and not what happens afterwards, let
us employ a trick: we will set the transition rate W10 = 0, making it impossible to unfold again
one you reach the totally folded state. Before we actually write down the master equation, let
us sketch out the calculation with this trick. If pmn(t) is the probability of starting from some
state n and reaching m in time t, then Un(t) =

∑
m>0 pmn(t) is the probability that if the protein

started at n, it has remained always unfolded during the time interval t. (If it had reached m = 0
at some time before t, it would have stayed there and not be at m > 0 at time t.) By construction
U0(t) = 0, since if you start folded, you will stay folded. On the other hand, if we start at n > 0
at t = 0, the initial condition is Un(0) = 1. Since there are only a �nite number of states to visit,
eventually the protein will fold, so Un(∞) = 0 for n > 0. Argue that the mean time to �rst reach
the folded state starting from n > 0 can be written as:

τn = −
∫ ∞
0

dt t
dUn
dt

(t) =

∫ ∞
0

dt Un(t) (5)

d) We know from class that pmn(t) satis�es both the master equation and the adjoint master
equation. The adjoint version has the form:

dpmn
dt

=
∑
n′

pmn′Ωn′n, (6)

where Ωn′n = Wn′n if n′ 6= n, and Ωnn = −
∑

n′ 6=nWn′n. Using the de�nitions and results of part
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c, show that Eq. (6) implies the following equation:

−1 =
∑
n′

τn′Ωn′n, for all n > 0 (7)

e) By plugging in the matrix components of Ω, show that Eq. (7) implies a recursion relation for
the variable ξn ≡ τn+1 − τn of the following form:

−1 = gnξn − rnξn−1, (8)

where gn = k0(N − n) and rn = nk1. Note that τ0 = 0 (the mean folding time starting in the
folded state is zero) so ξ0 = τ1. Also note that gN = 0, so Eq. (8) for n = N gives ξN−1 = 1/rN .

f) Verify by substitution that the solution of Eq. (8) is:

ξn =
1

rn+1

+
N−1∑

m=n+1

gn+1 · · · gm
rn+1 · · · rm+1

. (9)

g) Using Eq. (9) and the de�nitions of gn, rn, show that τ1 = ξ0 can be written as:

τ1 =
1

Nk0

[
(1 +K)N − 1

]
, (10)

where K = k0/k1 is the bias parameter. Hint: Remember that the binomial theorem says that:

(1 +K)N =
N∑
m=0

(
N

m

)
Km,

(
N

m

)
≡ N !

(N −m)!m!
(11)

h) There are several remarkable things about Eq. (10): it is an exact solution for the mean time it
takes to go from state 1 to 0. This is how long it takes for the protein to fold if it starts with only
a single amino acid in the incorrect form. Even without bias (K = 1) you would think that τ1
would be very fast, because the protein is starting so close to the folded state. However forK = 1
and large N you see that τ1 ≈ 2N(Nk0)

−1, the same expression we saw before. The likelihood
of making additional mistakes before �xing the one incorrect amino acid is just so high, that the
protein will wander away from its nearly perfect state and spend an eternity �nding it again.
Adding su�cient bias makes a huge di�erence: for k0 = 1 ns−1 and N = 100, �nd what value
of k1 is required to make τ1 = 1 ms. You will see that a very modest bias toward the folded
state takes τ1 from longer than the age of the universe down to biological time scales. As we will
see later in the course, we can relate k0/k1 to energy di�erences: if one amino acid going from
incorrect to correct lowers the protein energy by U , then k0/k1 = exp(−U/kBT ). Find what U
is in this case in units of kBT . Compare this to the energy of one hydrogen bond, Uh ≈ 1.5 kBT ,
a typical biological energy scale. Is the required bias reasonable?

Note: you could in principle calculate τn for n > 1 using the above results, but it requires
more work. As it turns out, τ1 and τn for any n > 1 have comparable orders of magnitude for
large N , so long as k0/k1 is not too small. In other words, the folding time depends only very
weakly on how far you start from the folded state. So τ1 is a reasonable quantity to look at in
estimating the general order of magnitude for the folding time.
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