
PHYS 414 Problem Set 2: No pumping!
Designing a “machine” on the nanometer scale is a formidable task: it has to operate in a

violent environment where the energies of thermal �uctuations are comparable to the intrinsic
energies of the machine itself. Yet nature has evolved a wide array of so-called motor proteins,
molecular systems that convert an external (usually chemical) energy source into motion. This
movement is invariably stochastic, but in order for the motor to be a meaningful machine, it has to
exhibit a de�nite bias, i.e. taking more forward steps than backward steps for linear movement (to
act as a cargo transporter), or more clockwise rather than counterclockwise motion for a rotary
motor (to act as a propeller to generate thrust). Inspired by these natural systems, researchers
are attempting to design arti�cial nanoscale machines, �rst as proof-of-principle demonstrations,
and eventually for technological applications. All these e�orts have inspired theoretical work to
understand the fundamental physical constraints on the behavior of stochastic machines.
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Figure 1: a) Externally imposed cycle driving the experimental [2]catenane system of Leigh et al.,
Nature 424, 174 (2003). b) Schematic energy landscapes underlying this cycle (see Problem 2 for
notation) where state energies En(t) change with time, but the barrier heights Bmn stay �xed.

One ingenious experiment [Leigh et al., Nature 424, 174 (2003)] constructed an arti�cial motor
from an interlocked assembly of one or two small rings moving around a larger ring. Fig. 1a
shows a schematic diagram of the [2]catenane, the case of one small ring on a larger ring, which
we will analyze in this problem set. The small ring has three possible binding sites (A, B, C)
on the larger ring, and the strength of binding can vary between the sites. Using an external
stimulus controlled by the experimentalist (in the form of light, heat, or chemicals) one can drive
the motor between di�erent conditions (systems I, II, and III), where in each case one binding site
is strongest. As shown in the �gure, in system I the equilibrium probability psA of being in site A
is larger than psB or psC . Though the small ring hops around stochastically, on average it will be
on site A more than the others. Modifying A to A′ by external stimulus (system I to system II)
destabilizes the binding, making psA′ now the smallest probability. The small ring will on average
be mostly bound to site B, which has the largest equilibrium probability. Similarly, modifying
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B to B′ (system II to system III) makes psC the largest, so the ring will spend more of its time on
C . Finally the experimentalist returns the system to its original state, by reverting A′ → A and
B′ → B (system III to system I). In principle then we should be able to drive the small ring around
the circle through this cycle of external changes, but one question remains: will there be bias in
the driving (clockwise vs. counterclockwise)? Can we design a mainly unidirectional motor?

Naively, one would think that the small ring would generally take the shortest route to its pre-
ferred binding site, so the cycle in Fig. 1a would create a net clockwise motion, since the preferred
site is moved clockwise. Surprisingly, the experiments revealed that actually there is no bias in
this cycle: on average, the small ring is just as likely to move counterclockwise as clockwise to its
preferred site. The full theoretical explanation for this came several years later, when Saar Rahav,
Jordan Horowitz and Christopher Jarzynski proved a general no-pumping theorem [Phys. Rev.
Lett. 101, 140602 (2008)], describing under what circumstances it is impossible to “pump” (gen-
erate biased motion) in a stochastic system with a periodic cycle of external driving. It turns out
that pumping requires a very particular kind of driving, which is not satis�ed in the [2]catenane
experiment, no matter what cycle the experimentalist constructs. For this system, the resolution
turned out to be adding another small ring and four binding sites, making it a [3]catenane (see
Fig. 5 of the Nature article). The repulsive interaction between the two small rings (the rings
cannot penetrate through each other) created conditions where pumping is allowed.

The many-body case of two small rings is rather complex, so we will not delve into it. But the
impossibility of pumping for one small ring by varying the binding site strengths periodically over
time can be shown to be a consequence of detailed balance, using elementary master equation
techniques. We will divide the task into two parts: in Problem 1 we will explore the stationary
state of a master equation under periodic driving; in Problem 2 we will build on these results to
derive the no pumping theorem for the [2]catenane system. The combination of experimental
results and theory highlights the non-trivial achievement of functioning molecular machines: it
is no simple matter to get anything done with a nano-engine!

Problem 1: Master equation under periodic driving

External changes in the environmental parameters are very simple to incorporate into the
master equation framework: the transition rates Wmn between states n and m in the system
become time-dependent functions Wmn(t), which re�ect some �xed protocol controlled by the
experimentalist. Note that at each instant in time the probabilities of each transition out of n over
the interval δt have to still sum to one,

∑
mWmn(t)δt = 1. Following the derivation in class, the

form of the master equation remains the same:

dpm(t)

dt
=

∑
n

[Wmn(t)pn(t)−Wnm(t)pm(t)] (1)

For an arbitrary Wmn(t), this master equation is not easy to manipulate, but we are interested
in a speci�c class of external stimulus which has the form of a cycle: in other words, Wmn(t)
is periodic, Wmn(t + T ) = Wmn(t), with some period T . In this problem we will show that
an ergodic system under these circumstances will go to a periodic state in the long-time limit,
pn(t+ T ) = pn(t) for any n as t→∞.
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For a driven system, it turns out to be easier to work at the level of discrete time steps δt. The
discrete time version of Eq. (1), the initial form we used earlier in the course, is just:

p(t+ δt) = δtW (t)p(t) (2)

where p(t) is a vector with components pm(t), and W (t) is a matrix with components Wmn(t).

a) Let us �rst focus on times t that are integer multiples of the period, t = jT for j = 0, 1, 2, . . ..
(We can also assume that T = τδt is an integer multiple of δt for some τ > 0.) By iterating Eq. (2)
and using the periodicity W (t+ T ) = W (t), show that p(jT + T ) can be related to p(jT ) as:

p(jT + T ) = TŴp(jT ), (3)

where Ŵ is a matrix independent of j. Find Ŵ in terms of products of the W (t) matrices, and
show that Ŵ has the standard property of a transition matrix, namely

∑
m ŴmnT = 1.

Note that Eq. (3) has the same form as Eq. (2), but with δt replaced by T andW (t) replaced by
the time-independent Ŵ . Thus it describes time evolution of the probability p over time intervals
equal to T . We will assume Ŵ corresponds to a strongly connected network, so that as t → ∞
(or equivalently j →∞) the probability p(jT )→ v, where v is some time-independent vector.

b) The �nal step is to �nd p(t) for some time t that is an integer multiple of δt, but not necessarily
an integer multiple of T . Using Eqs. (2) and (3), show that you can write:

p(t) = A(t mod T )p (bt/T cT ) , (4)

where A(t mod T ) is a matrix depending on t mod T ≡ t − bt/T cT , and bxc is the �oor of x
(the largest integer smaller or equal to x). Find an expression for A(t mod T ), and argue that as
t→∞, the probability becomes periodic in T , namely p(t+ T ) = p(t).

This is the main result that will help us with analyzing the motor cycle. Under periodic
driving, p(t) does not go to a stationary state in the strict sense, since p(t) still varies over small
time intervals δt. We will denote it instead as a periodic state, and write p(t → ∞) = pps(t),
where pps(t+ T ) = pps(t).

Problem 2: The no-pumping theorem

Rather than deriving the original proof [Rahav et al., Phys. Rev. Lett. 101, 140602 (2008)], we
will follow a simpler line of argument to get to the no-pumping theorem, outlined by Dibyendu
Mandal and Christopher Jarzynski [J. Stat. Mech. P10006 (2011)].

The main constraint of the transition ratesWnm(t) in the motor cycle is that they must always
respect detailed balance at every time instant. To understand this further, let us do a thought
experiment. Imagine we drive the motor from time zero to t, and W (t) is the rate matrix at
time t. If we suddenly stopped varying the rates after time t, so that W (t′) = W (t) for t′ ≥ t,
then the system should just relax to an equilibrium stationary state p(t′ → ∞) = ps(t). Note
the somewhat strange notation here: normally we write the equilbrium probability ps without
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a time subscript. But here it depends on what the rate matrix W (t) was at the moment we
stopped varying the rates. The value of this rate matrix will determine exactly what equilibrium
distribution we end up at through the detailed balance condition:

Wnm(t)

Wmn(t)
=
psn(t)

psm(t)
. (5)

Thus for every matrix W (t) at di�erent times t there exists a corresponding ps(t) which is the
equilibrium probability which would be achieved if the rates became frozen at t. Since detailed
balance assumes an ergodic system, psn(t) > 0 for all states n.

Of course in the real motor cycle we never freeze the rates, but continue to vary them peri-
odically with W (t + T ) = W (t). In this case the system never relaxes to any ps(t), but rather
goes to a periodic state pps(t) as shown in Problem 1. However we can still treat the ps(t) as
mathematical functions associated with W (t).

a) Since psn(t) > 0 for all n, we can write it in the form psn(t) = exp(−En(t)) for some real
function En(t). From our point of view En(t) is just a number, but the natural thermodynamic
interpretation (which will be evident when we cover the canonical ensemble in class) is that
En(t) is the energy of the nth state, measured in units where kBT . Similarly for those Wnm(t)
that are non-zero, we can write them in a speci�c form, Wnm(t) = w0 exp(−Bnm(t) + Em(t)),
where Bnm(t) is another real function and w0 is a constant with units of inverse time. Show that
detailed balance, Eq. (5), implies that the matrix B(t) is symmetric: Bnm(t) = Bmn(t). Since
Bnm(t) controls how quickly the system can transition between m and n, it can be interpreted
as the height of the energy barrier between the two states, in units of kBT (we will verify this
intuition in our later discussion of the Arrhenius law, where we will also see that w0 sets the
scale of how fast di�usion occurs on the energy landscape). See Fig. 1b for a schematic energy
landscape picture of the [2]catenane system.

The master equation equation for any driven system can be written as:

dpm
dt

=
∑
n

Jmn(t), Jmn(t) ≡ Wmn(t)pn(t)−Wnm(t)pm(t), (6)

where Jmn(t) is the net probability �ux from n to m. To evaluate pumping in the system, we will
look at the long time limit t → ∞, where we know from Problem 1 that pn(t) → ppsn (t) under
periodic driving. Then Jmn(t) → Jps

mn(t) as t → ∞. Note that Jps
mn(t + T ) = Jps

mn(t). Let us
de�ne the integrated �ux over one period in the long-time limit as:

Ψps
mn ≡

∫ t+T

t

dt′ Jps
mn(t′) (7)

The integrated �ux is a measure of directed motion in the cycle: if Ψps
mn > 0 for some states m

and n, that means that on average more probability �ows n→ m than m→ n over the course of
one cycle in the long-time limit. This would mean the driving is successfully pumping the system
between n and m, generating biased movement.

The no-pumping theorem states that Ψps
mn = 0 for allm and n if either of the following is true:
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1. If the state energiesEn(t) = En are �xed in time, but the barrier heightsBnm(t) are allowed
to vary in time.

2. If the state energies En(t) vary in time, but the barrier heights Bnm(t) = Bnm are �xed in
time.

Thus you have to vary both En(t) and Bnm(t) in time in order to get pumping, Ψps
nm 6= 0. The

[2]catenane experiment corresponds to case 2 above, since the external stimulus only a�ects pn(t)
(or equivalently En(t)). Hence no pumping will occur, regardless of how the experimentalist
changes pn(t).

b) Prove Ψps
nm = 0 for any m and n in case 1 above. Hint: For this case note that the rates

Wmn(t) vary with time (because Bnm(t) is time-dependent) but the ratios Wnm(t)/Wmn(t) =
exp(Em−En) are time-independent. Show that as a result the time-independent solution pn(t) =
exp(−En) for all n satis�es the master equation, Eq. (6). Thus in this special case the periodic
state ppsn (t) in the long-time limit is the same as the stationary state, ppsn (t) = psn = exp(−En),
which is of course trivially periodic.

c) Prove Ψps
nm = 0 for any m and n in case 2 above. To make the proof tractable, focus on the

three-state cyclic kinetic network of the [2]catenane system, where n = 1, 2, or 3 correspond to
the small ring binding at positionsA,B, orC . The transformations shown in Fig. 1a correspond to
time-dependent driving ofEn(t). (Note that even when only oneEn(t) is changed, all energies are
a�ected, in order to preserve the normalization

∑
n p

s
n(t) =

∑
n exp(−En(t)) = 1.) Assume the

barrier heightsBnm are �xed in time, and the only allowed transitions areW12(t),W21(t),W23(t),
W32(t), W13(t), and W31(t). Hint: The proof requires two ingredients. The �rst is integrating the
master equations for various n in Eq. (6) over one period in the long-time limit. The second part
comes from looking at the quantity Gij(t) ≡ Jij(t)e

Bij . Show that the sum of Gij(t) over a cycle
in the network is zero, G21(t) + G32(t) + G13(t) = 0. Then integrate this equation over one
period in the long-time limit.

Extra credit for the foolhardy: Can you �gure out why the [3]catenane system, with two small
rings hopping around four binding sites [Fig. 5 of Leigh et al., Nature 424, 174 (2003)], does not
fall under either of the two cases where the no-pumping theorem holds?
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