
PHYS 414 Problem Set 1: Brownian Motion
Problem 1
In class we derived a Fokker-Planck equation for the velocity distribution P(vx, t) starting from
the assumption of small random changes in velocity at each time step:

vx(t+ δt) = vx(t) +
fx(t)

M
δt (1)

where fx(t) is chosen from a distribution W (fx; vx). Einstein’s original approach to Brownian
motion had a di�erent starting point, focusing on position di�erences at each time step:

x(t+ ∆t) = x(t) + ξ(t) (2)

where ξ(t) is a random displacement chosen from some distribution W (ξ). Underlying this ap-
proach is the assumption that each successive random displacement is independent, i.e. ξ(t) =
x(t + ∆t) − x(t) and ξ(t + ∆t) = x(t + 2∆t) − x(t + ∆t) are uncorrelated. We know that
this can only be true if the corresponding velocities at x(t) and x(t + ∆t) are uncorrelated.
Einstein’s theory did not explicitly treat velocities, but we know from the results in class that
〈vx(t + ∆t)vx(t)〉 = (kBT/M) exp(−γ∆t/M). Hence Einstein’s approach is a good approxi-
mation assuming ∆t � M/γ. It will describe dynamics at coarser time scales than the Fokker-
Planck equation from lecture.

a) Derive a Fokker-Planck equation for the position distribution P(x, t) using Einstein’s ap-
proach. Follow the same reasoning as shown in class, but with W (ξ) instead of W (fx; vx). For
the �rst and second moments 〈ξ〉 and 〈ξ2〉 of the distribution W (ξ), use the class results for
〈(x(t + ∆t) − x(t))〉 and 〈(x(t + ∆t) − x(t))2〉, taking the limit ∆t � M/γ. In the end you
should derive the following dynamical equation:

∂P
∂t

(x, t) = D
∂2

∂x2
P(x, t) (3)

where D = kBT/γ. This is the Fokker-Planck equation for the position of a Brownian particle
in the absence of a potential (otherwise known as the di�usion equation).

b) Solve Eq. (3) for the distribution P(x, t;x0) with initial condition P(x, 0;x0) = δ(x − x0).
Hint: Assume P(x, t;x0) is a Gaussian with arbitrary time-dependent mean and variance, and
determine what those two quantities have to be in order for Eq. (3) to be satis�ed.

c) Using your solution from part b, calculate the mean squared displacement (MSD) ∆x2
rms(t) =

〈(x(t) − x(0))2〉. You can de�ne a rough measure of “mean velocity” over the time interval
between 0 and t as: v̄(t) = ∆xrms(t)/t. In the limit t → 0, compare the result of Einstein’s
theory for v̄(t) to the result from the theory presented in class. Show that Einstein’s result gives
nonsense as t → 0, while the class theory (which is applicable to smaller time scales) gives the
expected Maxwell-Boltzmann value. This underscores the fact that Einstein’s approach should
only be used when t�M/γ.
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Problem 2
In 2010 Mark Raizen and collaborators pulled o� something Einstein thought essentially im-

possible: measuring the instantaneous velocity distribution of a Brownian particle [T. Li et al.,
Science 328, 1673 (2010); pdf available on the course website]. To do so, one needs to be able to
probe time scales smaller than the velocity correlation time M/γ, where M is the mass of the
particle and γ the friction coe�cient of the surrounding medium. Air is ideal for such measure-
ments, because it has small γ compared to �uids, but Brownian particles tend to fall under the
in�uence of gravity.

Figure 1: Optical tweezer

To overcome this obstacle, the researchers took
advantage of an optical tweezer [Fig. 1] which uses
counter-propagating laser beams focused on one
point to form a trap for a silica bead (in this case with
a R = 1.5 µm radius). Light is refracted through
the bead, and the momentum change associated with
the bending of the rays induces a small force on the
bead. The net result is a three-dimensional harmonic
potential with a minimum at the laser focus. If the
center of the bead is away from the focus, it feels an
attractive force, i.e. Ftrap = −ktrapx for displacements
along the x direction. The spring constant ktrap can
be tuned by changing the laser intensity. This setup
prevents the bead from moving too far away from the
focus, and the de�ection of the two beams caused by
bead movements (monitored by a detector) allows ex-
tremely precise measurements of the bead position x(t) as a function of time. The goal of this
problem is to work out a dynamical theory of a Brownian particle in a harmonic potential which
is valid at time scales both smaller and larger thanM/γ. You will derive expressions for two of the
quantities directly measured in the experiment: the mean squared displacement 〈(x(t)− x(0))2〉
and the velocity autocorrelation function 〈vx(t)vx(0)〉 [Fig. 2].

a) Start with the same argument used in class to derive the Fokker-Planck equation for the veloc-
ity distribution P(vx, t) in the absence of a harmonic potential. When the force due to the trap,
Ftrap = −ktrapx is added to the problem, convince yourself that the distribution W (fx; vx) for
observing an incremental net force fx between t and t+ δt has to be replaced by W (fx;x, vx). In
other words, W now depends not only on the instantaneous velocity vx at time t, but also on the
particle position x. The position evolves in time as x(t+ δt) = x(t) + vx(t)δt. Similarly P(vx, t)
should be replaced by P(x, vx, t): the probability density to observe the particle at x with veloc-
ity vx at time t. Using an analogous approximation to the one in lecture, derive a Fokker-Planck
equation for P . This equation should take the form:

∂P
∂t

=
∑
ij

[
Bij

∂

∂qi
(qjP) + Aij

∂2P
∂qi∂qj

]
, (4)

where q = (x, vx), and A, B are 2× 2 matrices. From the derivation you should be able to deter-
mine the components of B in terms of the physical constants in the problem. For convenience,
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Figure 2: Experimental results from T. Li et al., Science 328, 1673 (2010). Left: the mean squared
displacement (MSD) 〈(x(t)−x(0))2〉 for a Brownian particle in air at two di�erent pressures, 99.8
kPa (red symbols) and 2.75 kPa (black symbols). For comparison the dashed lines show the long-
time di�usive regime (MSD = 2Dt) which would be achieved for a free Brownian particle in the
absence of a trap as t→∞. In contrast, the short time behavior of the experimental MSD is bal-
listic (MSD∝ t2). Right: the corresponding normalized velocity autocorrelation function (VACF)
〈vx(t)vx(0)〉/〈v2

x(0)〉, where 〈v2
x(0)〉 = kBT/M , in agreement with the Maxwell-Boltzmann dis-

tribution from the kinetic theory of gases.

you will �nd it useful to introduce variables Γ ≡ γ/M and ω =
√
ktrap/M , both of which have

units of inverse time. The matrix A must be symmetric since the order of the partial derivatives
in the second order term of the Taylor expansion does not matter. Thus assume it involves three
unknown constants, A11, A12 = A21, and A22. You will determine these in the next part.

b) Find the unknown constants in the matrixA by demanding that the joint equilibrium distribu-
tion Peq(x, vx) be a solution to Eq. (4) with the left side set to zero, ∂P/∂t = 0. The equilbrium
distribution is given by the product of the Maxwell-Boltzmann distributions for position and ve-
locity,

Peq(x, vx) =
Mω

2πkBT
exp

(
−Mv2

x +Mω2x2

2kBT

)
. (5)

Hint: Show that the above demand leads to a polynomial in x and vx being equal to zero. Since
the statement is true for all x and vx, each coe�cient of every power of x and vx must separately
equal zero.

You have now completely determined the multi-dimensional Fokker-Planck equation for the sys-
tem. Your result is known as the Kramers equation.

c) Sanity check: when the trap strength ktrap = 0, or equivalently ω = 0, can you recover the
Fokker-Planck equation for the velocity distribution alone derived in class,

∂P
∂t

(vx, t) = Γ
∂

∂vx
(vxP(vx, t)) +

ΓkBT

M

∂2P
∂v2

x

(vx, t). (6)
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To do so, integrate both sides of Eq. (4) over x, and note that P(vx, t) =
∫
dxP(x, vx, t). You can

assume that P(x, vx, t) is well behaved at x = ±∞, i.e. it goes to zero rapidly, as must be true of
a normalizable distribution.

d) Starting from some initial condition q(0) = q0 ≡ (x0, v0), Eq. (4) describes the subsequent
evolution of the joint probability P(q, t;q0). At any given time t ≥ 0, denote the instantaneous
average of qi(t) given the initial condition as 〈qi(t)〉q0 =

∫
dq qiP(q, t;q0). Show that this quan-

tity obeys the di�erential equation,

d

dt
〈qm(t)〉q0 =

∑
j

Cmj〈qj(t)〉q0 , (7)

and determine the components of the 2 × 2 matrix C . Hint: multiply both sides of Eq. (4) by qm
and integrate over both components of q, simplifying the results through integration by parts.

e) Solve Eq. (7) for 〈q(t)〉q0 . Hint: Though Eq. (7) is a vector equation, the form of the solution
is exactly analogous to the one-dimensional equation dq(t)/dt = Cq(t) where C is a scalar. You
will need the formula for the matrix exponential of a 2 × 2 matrix. To spare you the tedious
eigenvalue decomposition, here is the result:

A =

(
a b
c d

)
, eA = e(a+d)/2

(
cosh(∆) + (a−d)

2∆
sinh ∆ b

∆
sinh ∆

c
∆

sinh ∆ cosh ∆− (a−d)
2∆

sinh ∆,

)
(8)

where ∆ = 1
2

√
(a− d)2 + 4bc.

f) Using the result of part e, �nd the equilibrium averages 〈x(t)x(0)〉 and 〈vx(t)vx(0)〉, assuming
q0 is distributed with the equilibrium probability Peq(x0, v0) from Eq. (5). Calculate in addition
the MSD 〈(x(t)− x(0))2〉. If you did everything correctly, you can reproduce the results of Fig. 2
by plugging in ω = (50 µs)−1 and one of two values for Γ: at the pressure 99.8 kPa the value is
Γ = (49µs)−1, while at 2.75 kPa we have Γ = (147µs)−1. Note that for t = 0, 〈v2

x(0)〉 = kBT/M ,
exactly as predicted by the Maxwell-Boltzmann kinetic theory of gases. This is the instantaneous
measurement dreamed of by Einstein.
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