
RG Methods in Statistical Field Theory:
Problem Set 1 Solutions

In lecture, we argued that a field theory can be constructed by looking at a coarse-grained
description of a physical system, where the field φ(x) is a local thermodynamic average. In
the problem below, we will show an alternative way of constructing a field theory that can be
applied to certain systems, starting directly from the microscopic Hamiltonian. This method
is known as a Hubbard-Stratonovich transformation.

The physical system we consider is an Ising model on a d-dimensional hypercubic lattice,
defined by the Hamiltonian:

H = −1

2

∑
i,j

Jijsisj ,

where at each position xi in the lattice, we have a spin si that can take on one of two values,
si = ±1. The lattice spacing is ` and there are N sites in total. The interaction between
spins is given by the matrix J with components:

Jij =

{
J if i and j are nearest neighbors

0 otherwise ,

where J > 0. For a hypercubic lattice in d dimensions, a site xi will have 2d nearest
neighbors. The partition function for this system is:

Z =
∑

s1=±1

∑
s2=±1

· · ·
∑

sN=±1

e−βH .

We would like to express this partition function as a field theory. To do this, we first need
to prove an identity:

(a) Prove the following result for a general Gaussian integral over the variables φi, i =
1, . . . , N : ∫ ∞

−∞

N∏
i=1

dφi exp

(
−1

2

∑
i,j

φiAijφj

)
=

√
(2π)N

det(A)
.

Here A is a real, symmetric N×N matrix with positive eigenvalues, and we can consider the
φi to be components of an N -dimensional vector φ. Hint: To prove this identity, use the fact
that the N orthonormal eigenvectors of A form a basis for our N -dimensional vector space.
Let us denote these eigenvectors as vq, q = 1, . . . , N , and the corresponding eigenvalues λq.
They satisfy:

Avq = λqvq , vq · vq′ = δqq′ .

We can write the vector φ in the new basis as a linear combination of vq: φ =
∑

q φ̃qvq,
where the {φq} are some coefficients. To simplify the integral, do a change of variables from
the set {φi} to {φ̃q}. The integral should now look like a product of ordinary Gaussian

integrals, which can be solved using the result,
∫∞
−∞ dx exp(−ax2/2) =

√
2π/a for a > 0.

Keep in mind that the determinant of a matrix is the same in any basis.
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Answer: The new variables are defined by φ =
∑

q φ̃qvq, or in component notation: φi =∑
q φ̃qvqi, where vqi is the ith component of the eigenvector vq. Let us plug in this relation

to rewrite the term inside the exponential:

−1

2

∑
i,j

φiAijφj = −1

2

∑
i,j

(∑
q

φ̃qvqi

)
Aij

(∑
q′

φ̃q′vq′j

)

= −1

2

∑
q,q′

φ̃qφ̃q′

∑
i

vqi

∑
j

Aijvq′j

= −1

2

∑
q,q′

φ̃qφ̃q′

∑
i

λq′vqivq′i

= −1

2

∑
q,q′

φ̃qφ̃q′λq′δqq′

= −1

2

∑
q

λqφ̃
2
q .

In the fourth line we have used the orthonormal property of the eigenvectors, vq · vq′ =∑
i vqivq′i = δqq′ .

Changing the variables in the integral, we write:

N∏
i=1

dφi = | det(J)|
N∏

q=1

dφ̃q ,

where J is the Jacobian matrix for the transformation, defined as:

Jiq =
∂φi

∂φ̃q

.

From the relation φi =
∑

q φ̃qvqi, it is easy to see that Jiq = vqi, so the qth column of the
Jacobian matrix J is just the eigenvector vq. Using the orthonormality of the eigenvectors,
we can show that J is an orthogonal matrix, satisfying JTJ = 1:

(JTJ)ij =
∑

k

(JT )ikJkj =
∑

k

vikvjk = δij .

The determinant of a real, orthogonal matrix is equal to 1, because:

det(JTJ) = det(1) ⇒ det(JT ) det(J) = 1 ⇒ det(J)2 = 1 ⇒ det(J) = 1 ,

where we have used the fact that det(JT ) = det(J) for any matrix J.

Thus the integral becomes:∫ ∞

−∞

N∏
q=1

dφ̃q exp

(
−1

2

∑
q

λqφ̃
2
q

)
=
∏

q

∫ ∞

−∞
dφ̃q exp

(
−1

2
λqφ̃

2
q

)
=
∏

q

√
2π

λq
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In the basis of eigenvectors {vq} the matrix A is diagonal with the eigenvalues λq along the
diagonal. Thus det(A) =

∏
q λq in this basis. But the determinant is basis-independent, so

this result is true in any basis. Finally we get the answer:∫ ∞

−∞

N∏
i=1

dφi exp

(
−1

2

∑
i,j

φiAijφj

)
=

√
(2π)N∏

q λq

=

√
(2π)N

det(A)
.

(b) Using the result from (a), show that you can write:

e−βH = C

∫ ∞

−∞

N∏
i=1

dφi exp

(
β

2

∑
i,j

[−φiJijφj + siJijsj]

)
,

where the constant C =
√

det(βJ)/(2π)N .

Answer:

e−βH = exp

(
β

2

∑
i,j

siJijsj

)

= exp

(
β

2

∑
i,j

siJijsj

)√
det(βJ)

(2π)N

∫ ∞

−∞

N∏
i=1

dφi exp

(
−β

2

∑
i,j

φiJijφj

)

=

√
det(βJ)

(2π)N

∫ ∞

−∞

N∏
i=1

dφi exp

(
β

2

∑
i,j

[−φiJijφj + siJijsj]

)

(c) Introduce new variables mi = φi +si for each i. (The range of integration for mi remains
the same as for φi: from −∞ to ∞). Show that the integral from part (b) becomes:

e−βH = C

∫ ∞

−∞

N∏
i=1

dmi exp

(
β

2

∑
i,j

[−miJijmj + 2siJijmj]

)
.

Answer: For this change of variables the Jacobian has determinant 1, so
∏

i dφi =
∏

i dmi.
The integral becomes:

e−βH = C

∫ ∞

−∞

N∏
i=1

dmi exp

(
β

2

∑
i,j

[−(mi − si)Jij(mj − sj) + siJijsj]

)

= C

∫ ∞

−∞

N∏
i=1

dmi exp

(
β

2

∑
i,j

[−miJijmj + siJijmj + miJijsj]

)

Since Jij = Jji, we know that
∑

i,j miJijsj =
∑

i,j siJijmj. Thus we can write:

e−βH = C

∫ ∞

−∞

N∏
i=1

dmi exp

(
β

2

∑
i,j

[−miJijmj + 2siJijmj]

)
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(d) By taking the sum over all configurations {si}, show that you can now express the
partition function Z entirely in terms of an integral over the {mi}:

Z = C

∫ ∞

−∞

N∏
i=1

dmi exp

(
−β

2

∑
i,j

miJijmj +
∑

i

ln

(
2 cosh

∑
j

βJijmj

))

Hint: Use the fact that,

∑
s1=±1

∑
s2=±1

· · ·
∑

sN=±1

e
P

i f(si) =
∏

i

(∑
si=±1

ef(si)

)
,

where f(si) is some function of si.

Answer: Let us denote the sum over all possible spin states as∑
{si=±1}

≡
∑

s1=±1

∑
s2=±1

· · ·
∑

sN=±1

Then we have

Z =
∑

{si=±1}

e−βH

= C
∑

{si=±1}

∫ ∞

−∞

N∏
i=1

dmi exp

(
β

2

∑
i,j

[−miJijmj + 2siJijmj]

)

= C

∫ ∞

−∞

N∏
i=1

dmi exp

(
−β

2

∑
i,j

miJijmj

) ∑
{si=±1}

exp

(∑
i

∑
j

βsiJijmj

)

= C

∫ ∞

−∞

N∏
i=1

dmi exp

(
−β

2

∑
i,j

miJijmj

)∏
i

∑
si=±1

exp

(∑
j

βsiJijmj

)

= C

∫ ∞

−∞

N∏
i=1

dmi exp

(
−β

2

∑
i,j

miJijmj

)∏
i

2 cosh

(∑
j

βJijmj

)

= C

∫ ∞

−∞

N∏
i=1

dmi exp

(
−β

2

∑
i,j

miJijmj +
∑

i

ln

(
2 cosh

∑
j

βJijmj

))

(e) Now take the continuum limit of small lattice spacing `, letting mi = m(xi), where m(x)
is a continuous function over space. Show that:

∑
j

βJijmj = 2dβJm(xi) + βJ`2

d∑
α=1

∂2
αm(xi) + higher order terms .

Here α labels the d directions in the lattice, which have associated unit vectors êα. The
derivative along the êα direction is written as ∂α ≡ êα·∇. Hint: For each j, write mj = m(xj)
as a Taylor expansion around xi.
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Answer: For each position xi, there are 2d nearest neighbors: xi + `êα and xi − `êα for
α = 1, . . . , d. Thus we can write:

∑
j

βJijmj = βJ

d∑
α=1

m(xi + `êα) + βJ

d∑
α=1

m(xi − `êα)

The Taylor expansions for m(xi + `êα) and m(xi − `êα) are:

m(xi + `êα) = m(xi) + `∂αm(xi) +
1

2
`2∂2

αm(xi) + · · ·

m(xi − `êα) = m(xi)− `∂αm(xi) +
1

2
`2∂2

αm(xi) + · · ·

Plugging these in, the first order terms cancel and we get:

∑
j

βJijmj = 2dβJm(xi) + βJ`2

d∑
α=1

∂2
αm(xi) + · · ·

(f) Use the result of (e) to write the Z integral in terms of m(xi) and derivatives of m(xi).
In the continuum limit we can make the substitutions:∑

i

`dF (m(xi),∇m(xi),∇2m(xi), . . .) →
∫

ddxF [m(x),∇m(x),∇2m(x), . . .] ,

∫ ∞

−∞

N∏
i=1

dmi →
∫
Dm(x) ,

where F is some function. Finally, use the Taylor series expansion,

ln cosh x = x2/2− x4/12 + · · · ,

to write the partition function in the following functional integral form:

Z = C

∫
Dm(x) exp

(
−β

∫
ddx

[r
2
m2(x) + um4(x) +

c

2
(∇m(x))2 + higher order

])
,

where (∇m(x))2 ≡
∑d

α=1(∂αm(x))2. Write the coupling constants r, u, and c in terms of
β, `, d, and J . Hint: You may need to integrate by parts at some point to get the integral
into the correct form. Also, ignore any constant terms, since these will only shift the energy
levels in the system, but not change the thermodynamics.

Answer: Using the result of (e) we can write the terms in the integral as:

−β

2

∑
i,j

miJijmj = −1

2

∑
i

m(xi)
[
2dβJm(xi) + βJ`2∇2m(xi) + · · ·

]
= −1

2

∑
i

[
2dβJm2(xi) + βJ`2m(xi)∇2m(xi) + · · ·

]
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and (using the Taylor expansion of ln cosh x):

∑
i

ln

(
2 cosh

∑
j

βJijmj

)
=
∑

i

ln 2 +
∑

i

{
1

2

[
2dβJm(xi) + βJ`2∇2m(xi) + · · ·

]2
− 1

12

[
2dβJm(xi) + βJ`2∇2m(xi) + · · ·

]4}
=
∑

i

ln 2 +
∑

i

{
2(dβJ)2m2(xi) + 2dβ2J2`2m(xi)∇2m(xi)

−4

3
(dβJ)4m4(xi) + higher order

}
We ignore the constant term

∑
i ln 2 since it does not affect the physics. Putting everything

together the partition function now looks like:

Z = C

∫ ∞

−∞

N∏
i=1

dmi exp

(
−β
∑

i

`d
[r
2
m2(xi) + um4(xi)−

c

2
m(xi)∇2m(xi) + · · ·

])

where:

r = 2`−d
(
dJ − 2d2βJ2

)
, u =

4

3
`−dd4β3J4 , c = 2`2−d

(
2dβJ2 − 1

2
J

)
In the continuum limit Z becomes:

Z = C

∫
Dm(x) exp

(
−β

∫
ddx

[r
2
m2(x) + um4(x)− c

2
m(x)∇2m(x) + · · ·

])
The last step is to use integration by parts to write:∫

ddxm(x)∇2m(x) = −
∫

ddx (∇m(x))2

where we assume the surface term is zero. Thus finally we have:

Z = C

∫
Dm(x) exp

(
−β

∫
ddx

[r
2
m2(x) + um4(x) +

c

2
(∇m(x))2 + · · ·

])

In conclusion, the field theory you have constructed has the same form as the one shown in
class for an n = 1 component order parameter m(x), up to the constant C in front of the
path integral which does not affect the physics. In addition, for the case of the Ising model
you have shown how the coupling constants in the field theory depend on parameters of the
microscopic Hamiltonian like ` and J .
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